3 research outputs found

    4-Pyrimidinylamino-benzenesulfonamide derivatives and their use for the inhibition of polo-like kinase 1 (PLK1) for the treatment of cancer and their use for the treatment of bacterial infections

    No full text
    The present invention relates to 4-pyrimidinylamino-benzenesulfonamide derivatives of general formula (I) and pharmaceutically acceptable salts, solvates, hydrates, regioisomeric and polymorphic forms thereof, processes for manufacturing of them, the use of them, as well as pharmaceutical compositions containing at least one of them as pharmaceutically active agent(s) together with pharmaceutically acceptable carrier, excipient and/or diluents, especially for the inhibition of polo-like kinases (PLKs) and the treatment of cancer. Said 4-pyrimidinylamino-benzenesulfonamide compounds have been also identified as new drug candidates for the prevention and/or treatment of infectious diseases like bacterial diseases e.g. tuberculosis, including the currently multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) as well as for preventing tuberculosis

    High Neutrophil–Lymphocyte Ratio and Low Lymphocyte–Monocyte Ratio Combination after Thrombolysis Is a Potential Predictor of Poor Functional Outcome of Acute Ischemic Stroke

    No full text
    (1) Background: Ischemic stroke is one of the leading causes of death and disability. An inflammatory response is observed in multiple stages of cerebral ischemia, particularly in the acute phase. Recent publications revealed that the neutrophil–lymphocyte ratio (NLR) and lymphocyte–monocyte ratio (LMR) may be used to predict long-term prognosis in acute ischemic stroke (AIS) after thrombolysis. To test whether there is a relationship between the combination of these parameters and long-term prognosis, we analyzed the NLR–LMR combination in AIS patients treated with intravenous recombinant tissue plasminogen activator (rtPA); (2) Methods: The study included 285 adults with a diagnosis of AIS and rtPA treatment within a 4.5 h time window. Blood samples were obtained at admission and 24 h after thrombolysis to calculate pre- and post-thrombolysis NLR and LMR. Clinical data, including NIHSS was registered on admission and day 1. The long-term outcome was defined 90 days post-event by the modified Rankin Scale (mRS). Therapy-associated intracranial hemorrhage (ICH) was classified according to ECASS II. Receiver operating characteristic curve (ROC) analysis was performed to determine optimal cutoffs of NLR and LMR as predictors of therapy outcomes; (3) Results: Patients were stratified by cutoffs of 5.73 for NLR and 2.08 for LMR. The multivariate logistic regression model, including all possible confounders, displayed no significant association between NLR or LMR with 3-months functional prognosis. The combination of high NLR–low LMR vs. low NRL–high LMR as obtained 24 h after thrombolysis was found to be an independent predictor of poor 3-months functional outcome (mRS ≥ 2; OR 3.407, 95% CI 1.449 to 8.011, p = 0.005). The proportion of patients between low NLR–high LMR and high NLR–low LMR groups from admission to day 1 showed no significant change in the good outcome group. On the other hand, in the poor outcome group (mRS ≥ 2), low NLR–high LMR and high NLR–low LMR groups displayed a significant shift in patient proportions from 67% and 21% at admission (p = 0.001) to 36% and 49% at 24 h after thrombolysis (p < 0.001), respectively; (4) Conclusions: Our study demonstrated for the first time that a high NLR–low LMR combination as observed at 24 h after thrombolysis can serve as an independent predictor of 3-months poor outcome in AIS patients. This simple and readily available data may help clinicians to improve the prognostic estimation of patients and may provide guidance in selecting patients for personalized and intensified care post-thrombolysis
    corecore