11 research outputs found
Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness
New developments in the prevention of atherosclerosis in patients with low high-density lipoprotein cholesterol
Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia
Recommended from our members
Methodology for studying postprandial lipid metabolism
Background: Postprandial lipid metabolism in humans has deserved much attention during the last two decades. Although fasting lipid and lipoprotein parameters reflect body homeostasis to some extent, the transient lipid and lipoprotein accumulation that occurs in the circulation after a fat-containing meal highlights the individual capacity to handle an acute fat input. An exacerbated postprandial accumulation of triglyceride-rich lipoproteins in the circulation has been associated with an increased cardiovascular risk. Methods: The important number of studies published in this field raises the question of the methodology used for such postprandial studies, as reviewed. Results: Based on our experiences, the present review reports and discuss the numerous methodological issues involved to serve as a basis for further works. These aspects include aims of the postprandial tests, size and nutrient composition of the test meals and background diets, pre-test conditions, characteristics of subjects involved, timing of sampling, suitable markers of postprandial lipid metabolism and calculations. Conclusion: In conclusion, we stress the need for standardization of postprandial tests
Impaired HDL cholesterol efflux in metabolic syndrome is unrelated to glucose tolerance status: the CODAM study
High-density lipoproteins: an emerging target in the prevention of cardiovascular disease
Thrombin-receptor antagonist vorapaxar in acute coronary syndromes
BACKGROUND
Vorapaxar is a new oral protease-activated–receptor 1 (PAR-1) antagonist that inhibits
thrombin-induced platelet activation.
METHODS
In this multinational, double-blind, randomized trial, we compared vorapaxar with
placebo in 12,944 patients who had acute coronary syndromes without ST-segment
elevation. The primary end point was a composite of death from cardiovascular causes,
myocardial infarction, stroke, recurrent ischemia with rehospitalization, or urgent
coronary revascularization.
RESULTS
Follow-up in the trial was terminated early after a safety review. After a median follow-up
of 502 days (interquartile range, 349 to 667), the primary end point occurred in 1031
of 6473 patients receiving vorapaxar versus 1102 of 6471 patients receiving placebo
(Kaplan–Meier 2-year rate, 18.5% vs. 19.9%; hazard ratio, 0.92; 95% confidence interval
[CI], 0.85 to 1.01; P = 0.07). A composite of death from cardiovascular causes,
myocardial infarction, or stroke occurred in 822 patients in the vorapaxar group
versus 910 in the placebo group (14.7% and 16.4%, respectively; hazard ratio, 0.89;
95% CI, 0.81 to 0.98; P = 0.02). Rates of moderate and severe bleeding were 7.2% in the
vorapaxar group and 5.2% in the placebo group (hazard ratio, 1.35; 95% CI, 1.16 to 1.58;
P<0.001). Intracranial hemorrhage rates were 1.1% and 0.2%, respectively (hazard
ratio, 3.39; 95% CI, 1.78 to 6.45; P<0.001). Rates of nonhemorrhagic adverse events
were similar in the two groups.
CONCLUSIONS
In patients with acute coronary syndromes, the addition of vorapaxar to standard
therapy did not significantly reduce the primary composite end point but significantly
increased the risk of major bleeding, including intracranial hemorrhage
