10 research outputs found

    Magnetic Reconnection Triggered by the Parker Instability in the Galaxy: Two-Dimensional Numerical Magnetohydrodynamic Simulations and Application to the Origin of X-Ray Gas in the Galactic Halo

    Full text link
    We propose the Galactic flare model for the origin of the X-ray gas in the Galactic halo. For this purpose, we examine the magnetic reconnection triggered by Parker instability (magnetic buoyancy instability), by performing the two-dimensional resistive numerical magnetohydrodynamic simulations. As a result of numerical simulations, the system evolves as following phases: Parker instability occurs in the Galactic disk. In the nonlinear phase of Parker instability, the magnetic loop inflates from the Galactic disk into the Galactic halo, and collides with the anti-parallel magnetic field, so that the current sheets are created in the Galactic halo. The tearing instability occurs, and creates the plasmoids (magnetic islands). Just after the plasmoid ejection, further current-sheet thinning occurs in the sheet, and the anomalous resistivity sets in. Petschek reconnection starts, and heats the gas quickly in the Galactic halo. It also creates the slow and fast shock regions in the Galactic halo. The magnetic field (B∼3μB\sim 3 \muG), for example, can heat the gas (n∼10−3n\sim 10^{-3} cm−3^{-3}) to temperature of ∼106\sim 10^6 K via the reconnection in the Galactic halo. The gas is accelerated to Alfv\'en velocity (∼300\sim 300 km s−1^{-1}). Such high velocity jets are the evidence of the Galactic flare model we present in this paper, if the Doppler shift of the bipolar jet is detected in the Galactic halo. Full size figures are available at http://www.kwasan.kyoto-u.ac.jp/~tanuma/study/ApJ2002/ApJ2002.htmlComment: 13 pages, 12 figures, uses emulateapj.sty, accepted by Ap

    Numerical Examination of the Stability of an Exact Two-dimensional Solution for Flux Pile-up Magnetic Reconnection

    Full text link
    The Kelvin--Helmholtz (KH) and tearing instabilities are likely to be important for the process of fast magnetic reconnection that is believed to explain the observed explosive energy release in solar flares. Theoretical studies of the instabilities, however, typically invoke simplified initial magnetic and velocity fields that are not solutions of the governing magnetohydrodynamic (MHD) equations. In the present study, the stability of a reconnecting current sheet is examined using a class of exact global MHD solutions for steady state incompressible magnetic reconnection, discovered by Craig & Henton. Numerical simulation indicates that the outflow solutions where the current sheet is formed by strong shearing flows are subject to the KH instability. The inflow solutions where the current sheet is formed by a fast and weakly sheared inflow are shown to be tearing unstable. Although the observed instability of the solutions can be interpreted qualitatively by applying standard linear results for the KH and tearing instabilities, the magnetic field and plasma flow, specified by the Craig--Henton solution, lead to the stabilization of the current sheet in some cases. The sensitivity of the instability growth rate to the global geometry of magnetic reconnection may help in solving the trigger problem in solar flare research.Comment: Accepted for publication in ApJ. Associated movie files and a PDF with high-resolution figures are available at http://www.pha.jhu.edu/~shirose/Craig

    Two-Dimensional MHD Numerical Simulations of Magnetic Reconnection Triggered by A Supernova Shock in Interstellar Medium, Generation of X-Ray Gas in Galaxy

    Full text link
    We examine the magnetic reconnection triggered by a supernova (or a point explosion) in interstellar medium, by performing two-dimensional resistive magnetohydrodynamic (MHD) numerical simulations with high spatial resolution. We found that the magnetic reconnection starts long after a supernova shock (fast-mode MHD shock) passes a current sheet. The current sheet evolves as follows: (i) Tearing-mode instability is excited by the supernova shock, and the current sheet becomes thin in its nonlinear stage. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) ``Secondary tearing-mode instability'' occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs and anomalous resistivity sets in, because gas density decreases in the current sheet. Petschek type reconnection starts and heats interstellar gas. Magnetic energy is released quickly while magnetic islands are moving in the current sheet during Petschek type reconnection. The released magnetic energy is determined by the interstellar magnetic field strength, not energy of initial explosion nor distance to explosion. We suggest that magnetic reconnection is a possible mechanism to generate X-ray gas in Galaxy.Comment: 17 pages using emulateapj.sty, 24 figures (4colors), submitted to ApJ, mpeg simulations and psfiles are available at http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/apj2000/apj2000.htm

    Two-dimensional MHD numerical simulations of magnetic reconnection triggered by A Supernova shock in interstellar medium, generation of X-ray gas in galaxy

    No full text
    Submitted to ApJConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome; International School for Advanced Studies, Via Beirut, 7 Trieste / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore