56 research outputs found

    Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary

    Get PDF
    Fire is a major modifier of communities, but the evolutionary origins of its prevalent role in shaping current biomes are uncertain. Australia is among the most fire-prone continents, with most of the landmass occupied by the fire-dependent sclerophyll and savanna biomes. In contrast to biomes with similar climates in other continents, Australia has a tree flora dominated by a single genus, Eucalyptus, and related Myrtaceae. A unique mechanism in Myrtaceae for enduring and recovering from fire damage likely resulted in this dominance. Here, we find a conserved phylogenetic relationship between post-fire resprouting (epicormic) anatomy and biome evolution, dating from 60 to 62 Ma, in the earliest Palaeogene. Thus, fire-dependent communities likely existed 50 million years earlier than previously thought. We predict that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO2 compared with biomes with similar fire regimes in other continents

    Chloroplast DNA from lettuce and Barnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion

    Full text link
    We have cloned into plasmids 17 of 18 lettuce chloroplast DNA SacI fragments covering 96% of the genome. The cloned fragments were used to construct cleavage maps for 10 restriction enzymes for the chloroplast genomes of lettuce ( Lactuca sativa ) and Barnadesia caryophylla , two distantly related species in the sunflower family (Asteraceae). Both genomes are approximately 151 kb in size and contain a 25 kb inverted repeat. We also mapped the position and orientation of 37 chloroplast DNA genes. The mapping studies reveal that chloroplast DNAs of lettuce and Barnadesia differ by a 22 kb inversion in the large single copy region. Barnadesia has retained the primitive land plant genome arrangement, while the inversion has occurred in a lettuce lineage. The endpoints of the derived lettuce inversion were located by comparison to the well-characterized spinach and tobacco genomes. Both endpoints are located in intergenic spacers within tRNA gene clusters; one cluster being located downstream from the atpA gene and the other upstream from the psbD gene. The endpoint near the atpA gene is very close to one endpoint of a 20 kb inversion in wheat (Howe et al. 1983; Quigley and Weil 1985). Comparison of the restriction site maps gives an estimated sequence divergence of 3.7% for the lettuce and Barnadesia genomes. This value is relatively low compared to previous estimates for other angiosperm groups, suggesting a high degree of sequence conservation in the Asteraceae.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46961/1/294_2004_Article_BF00384619.pd
    • …
    corecore