4 research outputs found

    The Role of Exercise Testing in Pulmonary Vascular Disease: Diagnosis and Management

    No full text
    Exercise intolerance is the dominant symptom of pulmonary hypertension (PH). The gold standard for the estimation of exercise capacity is a cycle ergometer incremental cardiopulmonary exercise test (CPET). The main clinical variables generated by a CPET are peak oxygen uptake (VO2peak), ventilatory equivalents for carbon dioxide (VE/VCO2), systolic blood pressure, oxygen (O2) pulse, and chronotropic responses. PH is associated with hyperventilation at rest and at exercise, and an increase in physiologic dead space. Maximal cardiac output depends on right ventricular function and critically determines a PH patient's exercise capacity. Dynamic arterial O2 desaturation can also depress the VO2peak.SCOPUS: re.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Pulmonary vascular responses to exercise: a haemodynamic observation.

    No full text
    CommentEditorialSCOPUS: ed.jinfo:eu-repo/semantics/publishe

    Systemic vascular distensibility relates to exercise capacity in connective tissue disease

    No full text
    OBJECTIVE: Exercise intolerance is a common clinical manifestation of CTD. Frequently, CTD patients have associated cardio-pulmonary disease, including pulmonary hypertension or heart failure that impairs aerobic exercise capacity (pVO2). The contribution of the systemic micro-vasculature to reduced exercise capacity in CTD patients without cardiopulmonary disease has not been fully described. In this study, we sought to examine the role of systemic vascular distensibility, α in reducing exercise capacity (i.e. pVO2) in CTD patients. METHODS: Systemic and pulmonary vascular distensibility, α (%/mmHg) was determined from multipoint systemic pressure-flow plots during invasive cardiopulmonary exercise testing with pulmonary and radial arterial catheters in place in 42 CTD patients without cardiopulmonary disease and compared with 24 age and gender matched normal controls. RESULTS: During exercise, systemic vascular distensibility, α was reduced in CTD patients compared with controls (0.20 ± 0.12%/mmHg vs 0.30 ± 0.13%/mmHg, P =0.01). The reduced systemic vascular distensibility α, was associated with impaired stroke volume augmentation. On multivariate analysis, systemic vascular distensibility, α was associated with a decreased exercise capacity (pVO2) and decreased systemic oxygen extraction. CONCLUSION: Systemic vascular distensibility, α is associated with impaired systemic oxygen extraction and decreased aerobic capacity in patients with CTD without cardiopulmonary disease.SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Pulmonary Vascular Distensibility and Early Pulmonary Vascular Remodeling in Pulmonary Hypertension

    No full text
    Background: Exercise stress testing of the pulmonary circulation may uncover decreased pulmonary vascular (PV) distensibility as a cause of impaired aerobic exercise capacity and right ventricular (RV)-pulmonary arterial (PA) uncoupling. As such, it may help in the differential diagnosis of unexplained dyspnea, including pulmonary hypertension (PH) and/or heart failure with preserved ejection fraction (HFpEF). We investigated rest and exercise invasive pulmonary hemodynamics, ventilation, and gas exchange in patients with unexplained dyspnea, including 44 patients with HFpEF (of whom 20 had a normal pulmonary vascular resistance [PVR] during exercise [ie, passive HFpEF] and 24 had a higher than normal exercise PVR), 22 patients with exercise PH, 19 patients with pulmonary arterial hypertension (PAH), and 24 age- and sex-matched normal control subjects. Methods: A PV distensibility coefficient α (%/mm Hg) was determined from multipoint PV pressure-flow plots. RV-PA coupling was quantified from the analysis of RV pressure curves to determine ratios of end-systolic to arterial elastances (Ees/Ea). Aerobic exercise capacity was estimated by peak oxygen consumption. Results: The α coefficient decreased from 1.35 ± 0.58%/mm Hg in control subjects and 1.1 ± 0.48%/mm Hg in patients with passive HFpEF to 0.62 ± 0.32%/mm Hg in exercise PH, 0.54 ± 0.27%/mm Hg in HFpEF with high exercise PVR, and 0.18 ± 0.16%/mm Hg in PAH. On multivariate analysis, PV distensibility was associated with decreased Ees/Ea and maximal volume of oxygen consumed. Conclusions: PV distensibility is an early and sensitive hemodynamic marker of PV disease that is associated with RV-PA uncoupling and decreased aerobic exercise capacity.SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe
    corecore