142 research outputs found
STUDY OF METHANE CONCENTRATION VARIABILITY IN THE SURFACE LAYER OF THE SEA OF JAPAN IN THE CONTEXT OF SEISMIC EVENTS (BASED ON THE RESULTS OF EXPEDITION STUDIES IN 2017β2018)
A spatial distribution of methane dissolved in sea water is a critical but poorly understood factor in the context of seismic activity. Based on the results of the RV AKADEMIK OPARIN integrated geological-geophysical expedition (September 21 β October 31, 2017), this paper deals with the regularities of methane concentration variability in the surface layer of the Sea of Japan: the average growth and the average growth period were 70 % and 10 h, respectively, after each earthquake whereas a decrease in methane concentration in the sea water was 10β30 % 2β4 h before a seismic event. A decrease in methane concentration occurs irrespectively of the depth of an earthquake. The results obtained show good agreement with the published data and gaseous-geochemical monitoring materials, thus making it possible to associate seismic-related gaseous-geochemical regime not only with gas-saturated sediments but also with the water column of the Japan Basin (Sea of Japan)
Rheology of liquid crystalline phases of alkyloxybenzylidene toluidines
A unique viscometer of the CS rheometer viscometer class designed at the Kazan State University of Technology is used to measure viscosities of two p-n-alkyloxybenzylidene-p-toluidines in the entire temperature range of the liquid crystalline state and transition into an isotropic liquid. The measured shear stresses and flow rates are used to calculate shear rates and plot flow and viscosity curves. The liquid crystalline phase and isotropic liquid are demonstrated to possess Newtonian viscosity, whose viscous flow activation parameters are calculated in the temperature range under study. The results are discussed from the standpoint of intermolecular interactions and structural details of the liquid crystalline phase. Β© 2010 Pleiades Publishing, Ltd
A viscometric study of the liquid crystalline phase of alkyloxybenzoic acids
The viscosities of three benzoic acid derivatives (p-n-heptyloxy-, p-n-decyloxy-, and p-n-dodecyloxy-) were measured on a unique viscometer of the class of CS-rheometer-viscometers with controlled shear stress over the whole temperature range of the liquid crystalline state. Shear rates were calculated and flow and viscosity curves constructed from the experimental shear stress values taking into account the Rabinovich-Moony correction. The smectic and nematic phases were characterized by non-Newton and Newton viscosities, respectively, in all the samples studied. The activation parameters of viscous flow were calculated for Newton viscosity. The results are discussed in terms of intermolecular interactions and structural peculiarities of liquid crystalline phases. Β© 2009 Pleiades Publishing, Ltd
ΠΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΈΡΡΠ΅ΠΌΡ: 4-Π½-ΠΏΠ΅Π½ΡΠΈΠ»ΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΎΠΉΠ½Π°Ρ ΠΊΠΈΡΠ»ΠΎΡΠ°βN-(4-Π½-Π±ΡΡΠΈΠ»ΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΈΠ»ΠΈΠ΄Π΅Π½)-4β-ΠΌΠ΅ΡΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½
Objectives. Our aim was to study the dielectric properties of the 4-n-pentyloxybenzoic acidβ N-(4-n-butyloxybenzylidene)-4β-methylaniline system and reveal how different concentrations of N-(4-n-butyloxybenzylidene)-4β-methylaniline additives affect the dielectric properties of 4-n-pentyloxybenzoic acid.Methods. System properties were investigated using polarization thermomicroscopy and dielcometry.Results. We found that dielectric anisotropy changes its sign from positive to negative at the transition temperature of the high-temperature nematic subphase to the low-temperature one. The anisotropy of the dielectric constant of N-4-n-butoxybenzylidene-4β-methylaniline has a positive value and increases as to the system approaches the crystalline phase. The crystal structure of the 4-n-pentyloxybenzoic acid contains dimers formed by two independent molecules due to a pair of hydrogen bonds. The crystal structure of N-(4-n-butoxybenzylidene)-4β-methylaniline contains associates formed by orientational interactions of two independent molecules. 4-n-Pentyloxybenzoic acid dimers (270 nm) and associates of N-4-n-butoxybenzylidene-4β- methylaniline (250 nm) proved to have approximately the identical length. Considering the close length values of the structural units of both compounds and the dielectric anisotropy sign, we assume that the N-4-n-butoxybenzylidene-4β-methylaniline associates are incorporated into the supramolecular structure of the 4-n-pentyloxybenzoic acid. The specific electrical conductivity of the compounds under study lies between 10β7 and 10β12 Sβcmβ1. The relationship between the specific electrical conductivity anisotropy and the system composition in the nematic phase at the identical reduced temperature, obtained between 100 and 1000 Hz is symbatic. However, the electrical conductivity anisotropy values of the system obtained at 1000 Hz are lower compared to those obtained at 100 Hz. At N-(4-n-butoxybenzylidene)-4β-methylaniline concentrations between 30 and 60 mol %, the electrical conductivity anisotropy values are higher than those of the individual component.Conclusions. A change in the sign of the dielectric constant anisotropy of the 4-n-pentyloxybenzoic acid during nematic subphase transitions was established. We showed that the system has the highest dielectric constant anisotropy value when components have an equal number of moles. Highest electrical conductivity anisotropy values are observed when the concentration of the N-4-n-butoxybenzylidene-4αΎ½-methylaniline system lies between 30 and 60 mol %.Β Π¦Π΅Π»Ρ. ΠΠ·ΡΡΠΈΡΡ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΈΡΡΠ΅ΠΌΡ: 4-Π½-ΠΏΠ΅Π½ΡΠΈΠ»ΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΎΠΉΠ½Π°Ρ ΠΊΠΈΡΠ»ΠΎΡΠ°βN-(4-Π½-Π±ΡΡΠΈΠ»ΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΈΠ»ΠΈΠ΄Π΅Π½)-4β-ΠΌΠ΅ΡΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½. ΠΡΡΠ²ΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π΄ΠΎΠ±Π°Π²ΠΎΠΊ N-(4-Π½-Π±ΡΡΠΈΠ»ΒΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΈΠ»ΠΈΠ΄Π΅Π½)-4β-ΠΌΠ΅ΡΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π½Π° Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° 4-Π½-ΠΏΠ΅Π½ΡΠΈΠ»ΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΎΠΉΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ.ΠΠ΅ΡΠΎΠ΄Ρ. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΡΠΌΠΎΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ Π΄ΠΈΡΠ»ΡΠΊΠΎΠΌΠ΅ΡΡΠΈΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π° Π²ΡΡΠΎΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΉ Π½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ±ΡΠ°Π·Ρ Π² Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΡ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΡ ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠ²ΠΎΠΉ Π·Π½Π°ΠΊ Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ. ΠΠ½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΡ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΠΈ N-4-Π½-Π±ΡΡΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΈΠ»ΠΈΠ΄Π΅Π½-4β-ΠΌΠ΅ΡΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° ΠΈΠΌΠ΅Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ ΠΏΠΎ ΠΌΠ΅ΡΠ΅ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊ ΡΠ°Π·ΠΎΠ²ΠΎΠΌΡ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Ρ Π² ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°Π·Ρ. Π ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΡΠΊΡΡΡΠ΅ 4-Π½-ΠΏΠ΅Π½ΡΠΈΠ»ΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΎΠΉΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΡΡ Π΄ΠΈΠΌΠ΅ΡΡ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΠ΅ Π΄Π²ΡΠΌΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π°ΠΌΠΈ Π·Π° ΡΡΠ΅Ρ ΠΏΠ°ΡΡ H-ΡΠ²ΡΠ·Π΅ΠΉ. Π ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΡΠΊΡΡΡΠ΅ N-(4-Π½-Π±ΡΡΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΈΠ»ΠΈΠ΄Π΅Π½)-4β-ΠΌΠ΅ΡΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° ΠΏΡΠΈΡΡΡΡΡΠ²ΡΡΡ Π°ΡΡΠΎΡΠΈΠ°ΡΡ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΠ΅ Π·Π° ΡΡΠ΅Ρ ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Π΄Π²ΡΡ
Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ». ΠΡΠΌΠ΅ΡΠ΅Π½Π° Π±Π»ΠΈΠ·ΠΎΡΡΡ Π΄Π»ΠΈΠ½ Π΄ΠΈΠΌΠ΅ΡΠΎΠ² 4-Π½-ΠΏΠ΅Π½ΡΠΈΠ»ΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΎΠΉΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (270 Π½ΠΌ) ΠΈ Π°ΡΡΠΎΡΠΈΠ°ΡΠΎΠ² N-4-Π½-Π±ΡΡΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΈΠ»ΠΈΠ΄Π΅Π½-4β-ΠΌΠ΅ΡΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° (250 Π½ΠΌ). Π£ΡΠΈΡΡΠ²Π°Ρ Π±Π»ΠΈΠ·ΠΎΡΡΡ Π΄Π»ΠΈΠ½ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
Π΅Π΄ΠΈΠ½ΠΈΡ ΠΎΠ±ΠΎΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΈ Π·Π½Π°ΠΊ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΡ, ΡΡΠΎ Π°ΡΡΠΎΡΠΈΠ°ΡΡ N-4-Π½-Π±ΡΡΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΈΠ»ΠΈΠ΄Π΅Π½-4β-ΠΌΠ΅ΡΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° Π²ΡΡΡΠ°ΠΈΠ²Π°ΡΡΡΡ Π² Π½Π°Π΄ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ ΡΡΡΡΠΊΡΡΡΡ 4-Π½-ΠΏΠ΅Π½ΡΠΈΠ»ΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΎΠΉΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ. Π£Π΄Π΅Π»ΡΠ½Π°Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π»Π΅ΠΆΠΈΡ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 10β7β10β12 Π‘ΠΌΒ·ΡΠΌβ1. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΠΈ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ ΠΎΡ ΡΠΎΡΡΠ°Π²Π° ΡΠΈΡΡΠ΅ΠΌΡ Π΄Π»Ρ Π½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°Π·Ρ ΠΏΡΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΡΡΠΎΡΠ°Ρ
100 ΠΈ 1000 ΠΡ, ΠΈΠΌΠ΅ΡΡ ΡΠΈΠΌΠ±Π°ΡΠ½ΡΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ. ΠΠ΄Π½Π°ΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΠΈ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΡΡΠΎΡΠ΅ 1000 ΠΡ, Π½ΠΈΠΆΠ΅, ΡΠ΅ΠΌ Π½Π° ΡΠ°ΡΡΠΎΡΠ΅ 100 ΠΡ. ΠΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ N-(4-Π½-Π±ΡΡΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΈΠ»ΠΈΠ΄Π΅Π½)-4β-ΠΌΠ΅ΡΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π° ΠΎΡ 30 Π΄ΠΎ 60 ΠΌΠΎΠ». % Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΠΈ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΡ Π²ΡΡΠ΅, ΡΠ΅ΠΌ Π΄Π»Ρ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ°.ΠΡΠ²ΠΎΠ΄Ρ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΡΠΌΠ΅Π½Π° Π·Π½Π°ΠΊΠ° Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΠΈ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΠΈ 4-Π½-ΠΏΠ΅Π½ΡΠΈΠ»ΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΎΠΉΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π΅ ΠΌΠ΅ΠΆΠ΄Ρ Π½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ±ΡΠ°Π·Π°ΠΌΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ°ΠΌΠΎΠ΅ Π²ΡΡΠΎΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΠΈ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΏΡΠΈ ΡΠΊΠ²ΠΈΠΌΠΎΠ»ΡΡΠ½ΠΎΠΌ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ². ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°Π½ΠΈΠ·ΠΎΡΡΠΎΠΏΠΈΠΈ ΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ Π½Π°Π±Π»ΡΠ΄Π°ΡΡΡΡ ΠΏΡΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡ 30 Π΄ΠΎ 60 ΠΌΠΎΠ». % N-(4-Π½-Π±ΡΡΠΎΠΊΡΠΈΠ±Π΅Π½Π·ΠΈΠ»ΠΈΠ΄Π΅Π½)-4β-ΠΌΠ΅ΡΠΈΠ»Π°Π½ΠΈΠ»ΠΈΠ½Π°.
Resonance Raman Scattering in TlGaSe 2
The resonance Raman scattering for geometries Y(YX)Z and Y(ZX)Z at temperature 10βK and infrared reflection spectra in Eβ₯a and Eβ₯b polarizations at 300βK were investigated. The number of Aa (Ba) and Au (Bu) symmetry vibrational modes observed experimentally and calculated theoretically agree better in this case than when TlGa2Se4 crystals belong to D2h symmetry group. The emission of resonance Raman scattering and excitonic levels luminescence spectra overlap. The lines in resonance Raman spectra were identified as a combination of optical phonons in Brillouin zone center
ΠΠ‘Π‘ΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠ§ΠΠΠΠ‘Π’Π ΠΠΠΠ¦ΠΠΠ’Π ΠΠ¦ΠΠ ΠΠΠ’ΠΠΠ Π ΠΠΠΠΠ Π₯ΠΠΠ‘Π’ΠΠΠ Π‘ΠΠΠ ΠΠΠ Π―ΠΠΠΠ‘ΠΠΠΠ ΠΠΠ Π― Π ΠΠΠΠ’ΠΠΠ‘Π’Π Π‘ΠΠΠ‘ΠΠΠ§ΠΠ‘ΠΠΠ₯ Π‘ΠΠΠ«Π’ΠΠ (ΠΠ Π ΠΠΠ£ΠΠ¬Π’ΠΠ’ΠΠ ΠΠΠ‘ΠΠΠΠΠ¦ΠΠΠΠΠ«Π₯ ΠΠ‘Π‘ΠΠΠΠΠΠΠΠΠ 2017β2018 Π³Π³.)
A spatial distribution of methane dissolved in sea water is a critical but poorly understood factor in the context of seismic activity. Based on the results of the RV AKADEMIK OPARIN integrated geological-geophysical expedition (September 21 β October 31, 2017), this paper deals with the regularities of methane concentration variability in the surface layer of the Sea of Japan: the average growth and the average growth period were 70 % and 10 h, respectively, after each earthquake whereas a decrease in methane concentration in the sea water was 10β30 % 2β4 h before a seismic event. A decrease in methane concentration occurs irrespectively of the depth of an earthquake. The results obtained show good agreement with the published data and gaseous-geochemical monitoring materials, thus making it possible to associate seismic-related gaseous-geochemical regime not only with gas-saturated sediments but also with the water column of the Japan Basin (Sea of Japan).ΠΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠ°Π½Π°, ΡΠ°ΡΡΠ²ΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π² ΠΌΠΎΡΡΠΊΠΎΠΉ Π²ΠΎΠ΄Π΅, Π²ΠΎ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ Ρ ΡΠ΅ΠΉΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΈΠ³ΡΠ°Π΅Ρ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²Π°ΠΆΠ½ΡΡ, Π½ΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ ΡΠΎΠ»Ρ. Π ΡΠ°Π±ΠΎΡΠ΅ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Π³Π΅ΠΎΠ»ΠΎΠ³ΠΎ-Π³Π΅ΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΡΠΏΠ΅Π΄ΠΈΡΠΈΠΈ Π½Π° ΠΠΠ‘ Β«ΠΠΊΠ°Π΄Π΅ΠΌΠΈΠΊ ΠΠΏΠ°ΡΠΈΠ½Β» (21 ΡΠ΅Π½ΡΡΠ±ΡΡ β 31 ΠΎΠΊΡΡΠ±ΡΡ 2017 Π³.) ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΌΠ΅ΡΠ°Π½Π° Π² ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΠΎΠΌ ΡΠ»ΠΎΠ΅ ΠΌΠΎΡΡΠΊΠΎΠΉ Π²ΠΎΠ΄Ρ: ΠΏΠΎΡΠ»Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π΄Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΠΎΡΡΠ° ΡΠΎΡΡΠ°Π²ΠΈΠ» 70 %, ΡΡΠ΅Π΄Π½ΠΈΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΎΡΡΠ° 10 Ρ; ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΌΠ΅ΡΠ°Π½Π° Π² ΠΌΠΎΡΡΠΊΠΎΠΉ Π²ΠΎΠ΄Π΅ Π΄ΠΎΡΡΠΈΠ³Π°Π»ΠΎ 10β30 % Π·Π° 2β4 Ρ Π΄ΠΎ ΡΠ΅ΠΉΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠ±ΡΡΠΈΡ. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΌΠ΅ΡΠ°Π½Π° ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ Π³Π»ΡΠ±ΠΈΠ½Ρ Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΡ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΎΠ³Π»Π°ΡΡΡΡΡΡ Ρ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°ΠΌΠΈ Π³Π°Π·ΠΎΠ³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π° ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΎΠ±ΡΡΠΆΠ΄Π°ΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠ΅ΠΉΡΠΌΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΠΎΠ³ΠΎ Π³Π°Π·ΠΎΠ³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΠΆΠΈΠΌΠ° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π³Π°Π·ΠΎΠ½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΠΎΡΠ°Π΄ΠΊΠΎΠ², Π½ΠΎ ΠΈ ΡΠΎΠ»ΡΠΈ Π²ΠΎΠ΄ Π―ΠΏΠΎΠ½ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΡΡ
Geochemical features of Sakhalin Island mud volcanoes
The study, based on a complex geochemical research, found that the composition of the most chemical elements in mud breccia from the Yuzhno-Sakhalinsky (YSMV) and Pugachevsky (PMV) mud volcanoes (Sakhalin Island), the unique phenomena of endogenous defluidization in the Hokkaido-Sakhalin fold system (alpine-type folding), are comparable to Clark (C) contents of these elements (0.8-1.2 ΓC). For Na, Li, Zn andSn, the ratio between the elemental contentsand their Clarke values (Csample/Clark value) vary from 1.4 to 5.2 xC. But the increased contents of Na and Li are due to the ascending endogenous fluid revealed. Study of the mud breccia chemical composition changes in different explosive activity of YSMV under the seismic activity variationsallowed to establish that, when the mud-volcanic gryphonsare activated against the background of increase in the temperature of the water-mud mixture and the emission of spontaneous gases, the contents of a number of elements (iron, calcium, manganese, rare earth elements, etc.) are decreased. This is explained by the formation of soluble hydrocarbonate complexes. Daginskiegasgeothermal system (DGHS) trace elements depletedooze samples were compared with YSMV and PMVsamples and exposedthat thehigh ratios of Csample /Clarke values for the majority of elements do not exceed 0.6 Γ C.Ooze samples from DGHS having higher elemental contents than Clark contents were observed only for Cd content (2.2-3.4 ΓC) and Pb (0.7-1.5 ΓC). Analysis of diatom flora on the DGHS site indicates the existence of an active fluid dynamic system that drains oil and gas bearing complexes. The factors determining the "weighting" of the methane carbon isotope composition in the southern part of Sakhalin Island are the increased seismic activity of deep-seated faults, as well as the presence of intrusions (diabase) and metamorphically altered rocks.References Aliyev A.A., Guliyev I.S., Rakhmanov R.R., 2009. Catalog of eruptions of Azerbaijan mud volcanoes (1810-2007). Baku Nafta-Press, 109p. Astakhov A.S., et al., 2002. Defluitization process dynamic of the Central Sakhalin fault at seismic activization (by monitoring results of the Yuzhno-Sakhalinsky mud volcano in July - August 2001) DAN 2002, 386(2), 223-228. Decisions of operational interdepartmental regional stratigraphical meetings on the Paleogene and Neogene of east regions of Russia-Kamchatka, Koryak Upland, Sakhalin and Kuril Islands, 1998. An explanatory note to stratigraphical schemes. Responsible editor Gladenkov Y.B. Moscow GEOS, 147p. Diatomic algae of the USSR (fossil and modern), 1974. Leningrad Nauka, 1(1), 404p. Dubinin A.V., 2006. Geochemistry of rare-earth elements in the ocean. Moscow Nauka, 360p. Ershov V.V., Shakirov R.B., Obzhirov A.I., 2011. Isotope and geochemical characteristics of the Yuzhno-Sakhalinsky mud volcano free gases and their connection with regional seismicity. DAN, 440(2), 256-261. Fedorov Y.N., et al., 2012. Crude oil microelement characteristic of Vogulkinsky and Tyumen basins oil and gas area: comparison. Lithosphere, 2, 141-151. Geology of the USSR, 33. Sakhalin Island/Under the edited by Sidorenko A.V. Moscow Nedra, 1970, 464p. Grigoriev N. A., 2008. About clark content of chemical elements in the top part of continental crust. Lithosphere 1, 61-71. Thesis: 11.00.00. Yuzhno-Sakhalinsk, IMGG FEB RAS, 244p. Hasle G.R., Syvertsen E.E., 1996. Marine diatoms. Identifying Marine Phytoplankton. San Diego, Academic Press, 5-385. Horita J., 2001. Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. Geochimica et Cosmochimca Acta, 65, 1907-1919. Kholodov V.N., 2002. Mud volcanoes: distribution regularities and genesis. Lithology and Mineral Resources, 3, 227-22001.41. Kopf A.J., 2002. Significance of mud volcanism. Rev. Geophys, 40(2), 2-1-2-52. Liu Chia-Chuan, et al., 2013. The geochemical characteristics of the mud liquids in the Wushanting and Hsiaokunshui Mud Volcano region in southern Taiwan: Implications of humic substances for binding and mobilization of arsenic. Journal of Geochemical Exploration, 128, 62-71. Lobodenko I.Y., 2010. Holocenic tectonic deformations (paleoseismodislocations) in zones of the Hokkaido-Sakhalin and Central Sakhalin faults. Candidate of geological and mineralogical science thesis. Moscow, 22p. Melnikov O.A., 1987. Structure and geodynamics of the Hokkaido-Sakhalin folded region. Moscow Nauka, 93p. Melnikov O.A., 2011. About dynamics and nature of Pugachevsky group the gaswaterclastic ("mud") volcanoes on Sakhalin according to visual observations and an orohydrography. Volcanology and Seismology, 6, 47-59. Melnikov O.A., Ershov V.V., Kim Chong Un, etc., 2008.Β About the mud spring activity dynamic of the gaswaterclastic ("mud") volcanoes and its connection with seismicity on the example of the Yuzhno-Sakhalinsky volcano (Sakhalin Island). Pacific Geology 27(5), 25-41. Melnikov O.A., Iliev A.Y., 1989. About new manifestations of mud volcanism on Sakhalin Island. Pacific geology 3, 42-48. Milkov, A.V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology 167, 29-42. Oreshkin V.N., Gordeev V.V., 1983. Geochemistry of cadmium and plumbum in suspension of the rivers of Black, Azov and Caspian Sea areas. Geochemistry, 4, 603-613. Petelin V.P., 1957. Mineralogy of sand-aleurite fractions in the Sea of Okhotsk marine sediments. Proceedings of Oceanology Institute of USSR Academy of Sciences, XXII. Prasolov E.M., 1990. Isotope geochemistry and origin of natural gases. St. Petersburg: Nedra, 283p. Shakirov R.B., 2016. Gasgeochemical fields of the marginal seas on the Far Eastern Region: distribution, origin, relations to the geological structures, gashydrates and seismo-tectonics. Dissertation of Doctor of Geological and Mineralogical Sciences (Dr.Sci.). POI FEB RAS, Vladivostok 459p. (In Russian). Shakirov R.B., Syrbu N.C., Obzhirov A.I., 2012. Isotope and gas-geochemical features of methane and carbon dioxide distribution on Sakhalin Island and adjacent shelf of the Okhotsk Sea. Bulletin of KRAESC Earth Sciences, 2(20), 100-113. Shnyukov E.V., et al., 1992. Mud volcanism of the Kerch and Tamansky region. Kiev, Naukova dumka, 200p. Siryk I.M., 1968. Oil and gas content of the east slopes of the West Sakhalin mountains. Moscow: Nauka, 8-14. Sorochinskaya A.V., et al., 2008. Geochemical and mineralogical features of mud volcanoes of Sakhalin Island. Bulletin of FEB RAS, 4, 58-65. Veselov Π.V., Soinov V.V., 1997. Tektonosphere geodynamics of conjaction zone of the Pacific Ocean with Eurasia. Yuzhno Sakhalinsk: IMGG FEB RAS 4, 153-176. Veselov O.V., Volgin P.F., Lutaya L.M., 2012.Β Structure of the Pugachevsky mud-volcano sedimentary cover (Sakhalin Island) by geophysical modeling data. Pacific Geology, 31(6), 4-15. Vinogradov A.P., 1962. Average contents of chemical elements in the main types the igneous rocks. Geochemistry, 7, 555-571. Yakubov A.A., et al., 1980. Mud volcanism of the Soviet Union and its connection with oil-and-gas content. Baku, 165p. Zharov A.E., Mitrofanova L.I., Tuzov V.P., 2013. Stratigraphy of Cainozoic sedoiments of the Northern Sakhalin shelf. Stratigraphy, Geological correlation 21(5), 72-93
ΠΡΠ΅Π½ΠΊΠ° Π±ΠΈΠΎΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π° Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ
Aim: to develop a new modified index for the assessment of bioenergy heart in conditions of heart failure. To assess the energy of the heart when using systems to bypass the left ventricle of the heart using non-pulsed flow pumps. To consider the fundamental advantage of non-pulsating flow pumps with the generation of a pulsating flow in the cardio-synchronized copulsation mode over the counterpulsation mode.Π¦Π΅Π»Ρ: ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°ΡΡ Π½ΠΎΠ²ΡΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΈΠ½Π΄Π΅ΠΊΡ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π±ΠΈΠΎΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΄ΡΠ° Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ΅ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΡΠΎΠ²Π΅ΡΡΠΈ ΠΎΡΠ΅Π½ΠΊΡ Π±ΠΈΠΎΡΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠΈ ΡΠ΅ΡΠ΄ΡΠ° ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌ ΠΎΠ±Ρ
ΠΎΠ΄Π° Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠ° ΡΠ΅ΡΠ΄ΡΠ° Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π°ΡΠΎΡΠΎΠ² Π½Π΅ΠΏΡΠ»ΡΡΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΠΎΠΊΠ°. Π Π°ΡΡΠΌΠΎΡΡΠ΅ΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ Π½Π°ΡΠΎΡΠΎΠ² Π½Π΅ΠΏΡΠ»ΡΡΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° Ρ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ΅ΠΉ ΠΏΡΠ»ΡΡΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΠΊΠ°ΡΠ΄ΠΈΠΎΡΠΈΠ½Ρ
ΡΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΠΏΡΠ»ΡΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΆΠΈΠΌΠΎΠΌ ΠΊΠΎΠ½ΡΡΠΏΡΠ»ΡΡΠ°ΡΠΈΠΈ
ΠΡΠ΅Π½ΠΊΠ° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π½ΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΠΏΡΠ»ΡΡΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° Π² ΡΠΎΡΠΎΡΠ½ΡΡ Π½Π°ΡΠΎΡΠ°Ρ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ
Objective: to study the effect of a pulsatile flow-generation (PFG) device on the basic hemodynamic parameters of the circulatory system using a mathematical model.Results. Modelling and simulation showed that the use of PFG significantly (76%) increases aortic pulse pressure. The proposed mathematical model adequately describes the dynamics of the circulatory system and metabolism (oxygen debt) on physical activity in normal conditions and heart failure, and the use of non-pulsatile and pulsatile circulatory-assist systems. The mathematical model also shows that the use of PFG device blocks the development of rarefaction in the left ventricular cavity associated with a mismatch of blood inflow and outflow in diastolic phase when there is need to increase systemic blood flow by increasing the rotary pump speed.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ: Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΠΏΡΠ»ΡΡΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° (ΠΠΠ) Π½Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ (76%) ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠ»ΡΡΠΎΠ²ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² Π°ΠΎΡΡΠ΅ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΠΠ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎ ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° (ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π½ΡΠΉ Π΄ΠΎΠ»Π³) Π½Π° ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΡΡ Π½Π°Π³ΡΡΠ·ΠΊΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π½ΠΎΡΠΌΡ ΠΈ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π΅ΠΏΡΠ»ΡΡΠΈΡΡΡΡΠ΅ΠΉ ΠΈ ΠΏΡΠ»ΡΡΠΈΡΡΡΡΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΡΠΎΠ²ΠΎΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΠ° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΠΠΠ Π±Π»ΠΎΠΊΠΈΡΡΠ΅Ρ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΠ°Π·ΡΠ΅ΠΆΠ΅Π½ΠΈΡ Π² ΠΏΠΎΠ»ΠΎΡΡΠΈ Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡΠ΄ΠΎΡΠΊΠ°, ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ Ρ Π½Π΅ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ΠΌ ΠΏΡΠΈΡΠΎΠΊΠ° ΠΈ ΠΎΡΡΠΎΠΊΠ° ΠΊΡΠΎΠ²ΠΈ Π² Π΄ΠΈΠ°ΡΡΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°Π·Π΅, ΠΏΡΠΈ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ° Π·Π° ΡΡΠ΅Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ Π½Π°ΡΠΎΡΠ°
- β¦