13 research outputs found

    Method for a Multi-Vehicle, Simulation-Based Life Cycle Assessment and Application to Berlin’s Motorized Individual Transport

    Get PDF
    The transport sector in Germany causes one-quarter of energy-related greenhouse gas emissions. One potential solution to reduce these emissions is the use of battery electric vehicles. Although a number of life cycle assessments have been conducted for these vehicles, the influence of a transport system-wide transition has not been addressed sufficiently. Therefore, we developed a method which combines life cycle assessment with an agent-based transport simulation and synthetic electric-, diesel- and gasoline-powered vehicle models. We use a transport simulation to obtain the number of vehicles, their lifetime mileage and road-specific consumption. Subsequently, we analyze the product systems’ vehicle production, use phase and end-of-life. The results are scaled depending on the covered distance, the vehicle weight and the consumption for the whole life cycle. The results indicate that the sole transition of drive trains is insufficient to significantly lower the greenhouse gas emissions. However, sensitivity analyses demonstrate that there is a considerable potential to reduce greenhouse gas emissions with higher shares of renewable energies, a different vehicle distribution and a higher lifetime mileage. The method facilitates the assessment of the ecological impacts of complete car-based transportation in urban agglomerations and is able to analyze different transport sectors.DFG, 398051144, Analyse von Strategien zur vollständigen Dekarbonisierung des urbanen VerkehrsTU Berlin, Open-Access-Mittel – 202

    Social Sustainability in the Development of Service Robots

    Get PDF
    We introduce the concept of social sustainability, intertwined with ecological and economic aspects, to the field of service robots and comparable automation technology. It takes a first step towards a comprehensive guideline that operationalizes and applies social sustainability. By applying this guideline to the project MURMEL we offer a concept that collects and rates social key issues to visualize their individual importance. Social sustainability is an important and often overlooked aspect of sustainable technology development which should be considered in the early development phase.EFRE, 1247-B5-O, MURMEL: Mobiler Urbaner Roboter zur MüllEimer LeerungDFG, 398051144, Analyse von Strategien zur vollständigen Dekarbonisierung des urbanen Verkehr

    Fuel cell drive for urban freight transport in comparison to diesel and battery electric drives: a case study of the food retailing industry in Berlin

    Get PDF
    The option of decarbonizing urban freight transport using battery electric vehicle (BEV) seems promising. However, there is currently a strong debate whether fuel cell electric vehicle (FCEV) might be the better solution. The question arises as to how a fleet of FCEV influences the operating cost, the greenhouse gas (GHG) emissions and primary energy demand in comparison to BEVs and to Internal Combustion Engine Vehicle (ICEV). To investigate this, we simulate the urban food retailing as a representative share of urban freight transport using a multi-agent transport simulation software. Synthetic routes as well as fleet size and composition are determined by solving a vehicle routing problem. We compute the operating costs using a total cost of ownership analysis and the use phase emissions as well as primary energy demand using the well to wheel approach. While a change to BEV results in 17–23% higher costs compared to ICEV, using FCEVs leads to 22–57% higher costs. Assuming today’s electricity mix, we show a GHG emission reduction of 25% compared to the ICEV base case when using BEV. Current hydrogen production leads to a GHG reduction of 33% when using FCEV which however cannot be scaled to larger fleets. Using current electricity in electrolysis will increase GHG emission by 60% compared to the base case. Assuming 100% renewable electricity for charging and hydrogen production, the reduction from FCEVs rises to 73% and from BEV to 92%. The primary energy requirement for BEV is in all cases lower and for higher compared to the base case. We conclude that while FCEV have a slightly higher GHG savings potential with current hydrogen, BEV are the favored technology for urban freight transport from an economic and ecological point of view, considering the increasing shares of renewable energies in the grid mix.TU Berlin, Open-Access-Mittel - 2022DFG, 398051144, Analyse von Strategien zur vollständigen Dekarbonisierung des urbanen Verkehr

    Analysis of Charging Infrastructure for Private, Battery Electric Passenger Cars: Optimizing Spatial Distribution Using a Genetic Algorithm

    No full text
    To enable the deployment of battery electric vehicles (BEVs) as passenger cars in the private transport sector, suitable charging infrastructure is crucial. In this paper, a methodology for the efficient spatial distribution of charging infrastructure is evaluated by investigating a scenario with a 100% market penetration of BEVs of (around 1.3 million vehicles) in Berlin, Germany. The goal of the evaluated methodology is the development of various charging infrastructure scenarios—including public and private charging—which are suitable to cover the entire charging demand. Therefore, these scenarios are investigated in detail with a focus on the number of public charging points, their spatial distributions, the available charging power, and the necessary capital costs. For the creation of these charging infrastructure scenarios, a placement model is developed. As input, it uses the data of a multi-agent transport simulation (MATSim) scenario of the metropolitan area of Berlin to evaluate and optimize different distributions of charging infrastructure. The model uses a genetic algorithm and the principle of multi-objective optimization. The capital costs of the charging points and the mean detour car drivers must undertake are used as the optimization criteria. Using these criteria, we expect to generate cost-efficient infrastructure solutions that provide high usability at the same time. The main advantage of the method selected is that multiple optimal solutions with different characteristics can be found, and suitable solutions can be selected by subsequently using other criteria. Besides the generated charging scenarios for Berlin, the main goal of this paper is to provide a valid methodology, which is able to use the output data of an agent-based, microscopic transport simulation of an arbitrary city or area (or even real driving data) and calculate different suitable charging infrastructure scenarios regarding the different optimization criteria. This paper shows a possible application of this method and provides suggestions to improve the significance of the results in future works. The optimized charging infrastructure solutions for the Berlin scenario show capital costs of between EUR 624 and 2950 million. Users must cover an additional mean detour of 254 m to 590 m per charging process to reach an available charging point. According to the results, a suitable ratio between the charging points and vehicles is between 11:1 and 5:1. A share of fast charging infrastructure (>50 kW) of less than ten percent seems to be sufficient if it is situated at the main traffic routes and highly frequented places

    Analysis of Electric Moped Scooter Sharing in Berlin: A Technical, Economic and Environmental Perspective

    No full text
    Electric moped scooter sharing services have recently experienced strong growth rates, particularly in Europe. Due to their compactness, environmental-friendliness and convenience, shared e-mopeds are suitable for helping to reduce the environmental impact of urban transport. However, its traffic-related, economic and environmental effects are merely represented in academic research. Therefore, this study investigates the ability of an e-moped sharing system to substitute passenger car trips, and the resulting economic and environmental effects. First, we model fleets of 2500, 10,000 and 50,000 shared e-mopeds in Berlin, based on a passenger car scenario generated by the multi-agent transport simulation framework MATSim. Afterwards, the total cost of ownership and a life cycle assessment are conducted. The results indicate that a substantial part of all passenger car trips in Berlin can be substituted. The larger the fleet, the more and longer trips are replaced. Simultaneously, the efficiency in terms of fleet utilization decreases. The scenario with 10,000 e-mopeds offers the lowest total distance-based costs for sharing operators, whereas a fleet consisting of 2500 vehicles exhibits the lowest environmental emissions per kilometer. Already with today’s grid mix, the use of shared e-mopeds results in a significant reduction in environmental impact compared to conventional and battery-electric passenger cars.DFG, 398051144, Analyse von Strategien zur vollständigen Dekarbonisierung des urbanen VerkehrsDFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli

    Environmental Impact of Subsidy Concepts for Stimulating Car Sales in Germany

    No full text
    In 2020, vehicle sales decreased dramatically due to the COVID-19 pandemic. Therefore, several voices have demanded a vehicle subsidy similar to the “environmental subsidy” in Germany in 2009. The ecological efficiency of vehicle subsidies is controversially discussed. This paper establishes a prognosis of the long-term environmental impacts of various car subsidy concepts. The CO2 emissions of the German car fleet impacted by the purchase subsidies are determined. A balance model of the CO2 emissions of the whole car life cycle is developed. The implementation of different subsidy scenarios directly affects the forecasted composition of the vehicle population and, therefore, the resulting life-cycle assessment. All scenarios compensate the additional emissions required by the production pull-in within the considered period and, hence, reduce the accumulated CO2 emissions until 2030. In the time period 2019–2030 and for a total number of 0.72 million subsidized vehicles—compensating the decrease due to the COVID-19 pandemic—savings of between 1.31 and 7.56 million t CO2 eq. are generated compared to the scenario without a subsidy. The exclusive funding of battery electric vehicles (BEVs) is most effective, with an ecological break-even in 2025.DFG, 398051144, Analyse von Strategien zur vollständigen Dekarbonisierung des urbanen VerkehrsTU Berlin, Open-Access-Mittel – 202

    Comparative Life Cycle Assessment of Battery and Fuel Cell Electric Cars, Trucks, and Buses

    No full text
    Addressing the pressing challenge of global warming, reducing greenhouse gas emissions in the transportation sector is a critical imperative. Battery and fuel cell electric vehicles have emerged as promising solutions for curbing emissions in this sector. In this study, we conducted a comprehensive life cycle assessment (LCA) for typical passenger vehicles, heavy-duty trucks, and city buses using either proton-exchange membrane fuel cells or Li-ion batteries with different cell chemistries. To ensure accuracy, we supplemented existing studies with data from the literature, particularly for the recycling phase, as database limitations were encountered. Our results highlight that fuel cell and battery systems exhibit large emissions in the production phase. Recycling can significantly offset some of these emissions, but a comparison of the technologies examined revealed considerable differences. Overall, battery electric vehicles consistently outperform fuel cell electric vehicles regarding absolute greenhouse gas emissions. Hence, we recommend prioritizing battery electric over fuel cell vehicles. However, deploying fuel cell electric vehicles could become attractive in a hydrogen economy scenario where other factors, e.g., the conversion and storage of surplus renewable electricity via electrolysis, become important

    Methode zur Bestimmung von Ladestrategien fĂĽr GĂĽterverkehrsfahrzeuge basierend auf Verkehrssimulationsergebnissen

    No full text
    Submitted to ABMTRANS'21 – 10th International Workshop on Agent-based Mobility, Traffic and Transportation Models, Methodologies and ApplicationsThe decarbonization of transport is one major challenge in the upcoming years. One possible solution is the use of battery electric vehicles (BEV). While electric passenger cars and their charging strategies are already in series production, battery electric trucks and their charging strategies are still mostly in the prototype stage. The range limitations of battery electric trucks represent a new challenge for logistics. Therefore, we introduce a methodology for determining charging strategies for freight transport vehicles based on transport simulation results. We analyze the results of an agent-based transport simulation (MATSim) and evaluate different settings of normal and fast charging points. We found for a case study dealing with the food retailing in Berlin, that for a fleet with 279 vehicles in 16 depots 214 normal and 61 fast charging points are sufficient to complete approx. 90% of the tours with BEV. If the vehicles share their charging points, only 71 fast charging points with 400 kW are sufficient. With higher charging power the share of charged vehicles hardly increases. With 29 additional high performance opportunity chargers within the city, all tours can be operated by battery electric trucks.DFG, 398051144, Analyse von Strategien zur vollständigen Dekarbonisierung des urbanen Verkehr
    corecore