9 research outputs found
Recommended from our members
Search for alpha driven BAEs in TFTR
A search for alpha driven beta-induced Alfvén eigenmodes (BAEs) was conducted in low current (1.0-1.6 MA) TFTR supershots. Stable high beta deuterium-tritium (DT) discharges were obtained with β = 2.4 and a central alpha beta of 0.1%. Instabilities between 75 and 200 kHz were observed by magnetics probes in many DT discharges, but the activity was also present in deuterium-deuterium (DD) comparison discharges, indicating that these modes are not destabilized (principally) by the alpha particle population. Losses of fusion products are also similar in the two sets of discharges. Theoretical simulations confirm that the achieved alpha particle pressure is too small to produce instability.
Recommended from our members
Progress towards increased understanding and control of internal transport barriers in DIII-D
Substantial progress has been made towards both understanding and control of internal transport barriers (ITBs) on DIII-D, resulting in the discovery of a new sustained high performance operating mode termed the quiescent double barrier (QDB) regime. The QDB regime combines core transport barriers with a quiescent ELM-free H mode edge (termed QH mode), giving rise to separate (double) core and edge transport barriers. The core and edge barriers are mutually compatible and do not merge, resulting in broad core profiles with an edge pedestal. The QH mode edge is characterized by ELM-free behaviour with continuous multiharmonic MHD activity in the pedestal region and has provided density and radiated power control for longer than 3.5 s (25τE) with divertor pumping. QDB plasmas are long pulse high performance candidates, having maintained a βN H89 product of 7 for five energy confinement times (Ti ≤ 16 keV, βN ≤ 2.9, H89 ≤ 2.4 τE ≤ 150 ms, DD neutron rate Sn ≤ 4 × 1015 s-1). The QDB regime has only been obtained in counter-NBI discharges (injection antiparallel to the plasma current) with divertor pumping. Other results include successful expansion of the ITB radius using (separately) both impurity injection and counter-NBI, and the formation of ITBs in the electron thermal channel using both ECH and strong negative central shear (NCS) at high power. These results are interpreted within a theoretical framework in which turbulence suppression is the key to ITB formation and control, and a decrease in core turbulence is observed in all cases of ITB formation
H-MODE THRESHOLD AND DYNAMICS IN THE NATIONAL SPHERICAL TORUS EXPERIMENT
Edge parameters play a critical role in high confinement mode (H-mode) access, which is a key component of discharge optimization in present day toroidal confinement experiments and the design of next generation devices. Because the edge magnetic topology of a spherical torus (ST) differs from a conventional aspect ratio tokamak, H-modes in STs exhibit important differences compared with tokamaks. The dependence of the National Spherical Torus Experiment (NSTX) [C. Neumeyer , Fusion Eng. Des. 54, 275 (2001)] edge plasma on heating power, including the low confinement mode (L-mode) to H-mode (L-H) transition requirements and the occurrence of edge-localized modes (ELMs), and on divertor configuration is quantified. Comparisons between good L-modes and H-modes show greater differences in the ion channel than the electron channel. The threshold power for the H-mode transition in NSTX is generally above the predictions of a recent International Tokamak Experimental Reactor (ITER) [ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999)] scaling. Correlations of transition and ELM phenomena with turbulent fluctuations revealed by gas puff imaging and reflectometry are observed. In both single-null and double-null divertor discharges, the density peaks off-axis, sometimes developing prominent "ears" which can be sustained for many energy confinement times, tau(E), in the absence of ELMs. A wide variety of ELM behavior is observed, and ELM characteristics depend on configuration and fueling. (C) 2003 American Institute of Physics.open112324sciescopu
Recommended from our members
The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios
A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with βT ≡ /(BT02/2μ0) of up to 35%. Normalized beta values often exceed the no-wall limit, and studies suggest that passive wall mode stabilization enables this for H mode plasmas with broad pressure profiles. The viability of long, high bootstrap current fraction operations has been established for ELMing H mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fuelling are likely contributing to a reduction in H mode power thresholds. Electron thermal conduction is the dominant thermal loss channel is auxiliary heated plasmas examined thus far. HHFW effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is obtained by comparison of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. Studies of emissions from electron Bernstein waves indicate a density scale length dependence of their transmission across the upper hybrid resonance near the plasma edge that is consistent with theoretical predictions. A peak heat flux to the divertor targets of 10 MW m-2 has been measured in the H mode, with large asymmetries being observed in the power deposition between the inner and outer strike points. Non-inductive plasma startup studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been driven, and studies to assess flux closure and coupling to other current drive techniques have begun
Recommended from our members
The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios
A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with β ≡ /(B /2μ ) of up to 35%. Normalized beta values often exceed the no-wall limit, and studies suggest that passive wall mode stabilization enables this for H mode plasmas with broad pressure profiles. The viability of long, high bootstrap current fraction operations has been established for ELMing H mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fuelling are likely contributing to a reduction in H mode power thresholds. Electron thermal conduction is the dominant thermal loss channel is auxiliary heated plasmas examined thus far. HHFW effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is obtained by comparison of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. Studies of emissions from electron Bernstein waves indicate a density scale length dependence of their transmission across the upper hybrid resonance near the plasma edge that is consistent with theoretical predictions. A peak heat flux to the divertor targets of 10 MW m has been measured in the H mode, with large asymmetries being observed in the power deposition between the inner and outer strike points. Non-inductive plasma startup studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been driven, and studies to assess flux closure and coupling to other current drive techniques have begun. T T0 0 2 -
Recommended from our members
Overview of DT results from TFTR
Experiments with plasmas having nearly equal concentrations of deuterium and tritium have been carried out on TFTR. To date (September 1995), the maximum fusion power has been 10.7 MW, using 39.5 MW of neutral beam heating, in a supershot discharge and 6.7 MW in a high beta P discharge following a current ramp-down. The fusion power density in the core of the plasma has reached 2.8 MW/m3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER). The energy confinement time tau E is observed to increase in DT, relative to D plasmas, by 20% and the n1(0).T1(0). tau E product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter H mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high beta P discharges. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations assuming classical confinement. Measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from helium gas puffing experiments. The loss of energetic alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha particle driven instabilities has yet been observed. ICRF heating of a DT plasma, using the second harmonic of tritium, has been demonstrated. DT experiments on TFTR will continue both to explore the physics underlying the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor
Recommended from our members
Overview of DT results from TFTR
Experiments with plasmas having nearly equal concentrations of deuterium and tritium have been carried out on TFTR. To date (September 1995), the maximum fusion power has been 10.7 MW, using 39.5 MW of neutral beam heating, in a supershot discharge and 6.7 MW in a high beta discharge following a current ramp-down. The fusion power density in the core of the plasma has reached 2.8 MW/m , exceeding that expected in the International Thermonuclear Experimental Reactor (ITER). The energy confinement time tau is observed to increase in DT, relative to D plasmas, by 20% and the n (0).T (0). tau product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter H mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high beta discharges. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations assuming classical confinement. Measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from helium gas puffing experiments. The loss of energetic alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha particle driven instabilities has yet been observed. ICRF heating of a DT plasma, using the second harmonic of tritium, has been demonstrated. DT experiments on TFTR will continue both to explore the physics underlying the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor. P E 1 1 E P
OVERVIEW OF RECENT TFTR RESULTS
Robin Kundis Craig, left, and Stegner Lecturer Mary Evelyn Tucker, center