18 research outputs found

    Influence of concentration and type of microcrystalline cellulose on the physical properties of tablets containing Cornelian cherry fruits

    Get PDF
    The aim of this study was to find the optimal tablet composition with maximum content of dried fruits (Cornus mas L.). The effect of three different concentrations (12.5, 25 and 50 %) of two types of microcrystalline cellulose (Avicel® PH 101 and Avicel® PH 200) and three different compression pressures (20, 60 and 100 MPa) on the physical properties of tablet blends and tablets was studied. Tablets containing 50 % Avicel® PH 101 compressed under 100 MPa were found to have the best physical properties. This combination of composition and compression pressure resulted in stable tablets even after storage under accelerated stability conditions (6 months, 40 °C and 75 % RH)

    Optimization of Spray Drying Process Parameters for the Preparation of Inhalable Mannitol-Based Microparticles Using a Box-Behnken Experimental Design

    No full text
    Inhalation is used for local therapy of the lungs and as an alternative route for systemic drug delivery. Modern powder inhalation systems try to target the required site of action/absorption in the respiratory tract. Large porous particles (LPPs) with a size >5 μm and a low mass density (usually measured as bulk or tapped) of 3 can avoid protective lung mechanisms. Their suitable aerodynamic properties make them perspective formulations for deep lung deposition. This experiment studied the effect of spray-drying process parameters on LPP properties. An experimental design of twelve experiments with a central point was realized using the Box–Behnken method. Three process parameters (drying temperature, pump speed, and air speed) were combined on three levels. Particles were formed from a D-mannitol solution, representing a perspective material for lung microparticles. The microparticles were characterized in terms of physical size (laser diffraction), aerodynamic diameter (aerodynamic particle sizer), morphology (SEM), and densities. The novelty and main goal of this research were to describe how the complex parameters of the spray-drying process affect the properties of mannitol LPPs. New findings can provide valuable data to other researchers, leading to the easy tuning of the properties of spray-dried particles by changing the process setup

    Effects of Various Drying Times on the Properties of 3D Printed Orodispersible Films

    No full text
    Orodispersible films are an innovative dosage form. Their main advantages are the application comfort and the possibility of personalization. This work aimed to evaluate the influence of different drying times on the properties of orodispersible films of various thicknesses, prepared in two different semisolid extrusion 3D printing setups. In the first experiment, drying times were dependent on the overall print time of each batch. In the second setup, the drying time was set equal according to the longest one. The evaluated parameters were films’ weight uniformity, thickness, moisture content, surface pH, disintegration time, hardness, and tensile strength. Upon statistical comparison, significant differences in the moisture content were found, subsequently affecting the disintegration time. Moreover, statistically significant differences in films’ mechanical properties (hardness, tensile strength) were also described, proving that moisture content simultaneously affects film plasticity and related properties. In conclusion, a mutual comparison of the manufactured orodispersible films showed that the drying time affects their physical and mechanical properties. The in-process drying setup was proved to be sufficient while allowing quicker manufacturing

    Optimization of Spray Drying Process Parameters for the Preparation of Inhalable Mannitol-Based Microparticles Using a Box-Behnken Experimental Design

    No full text
    Inhalation is used for local therapy of the lungs and as an alternative route for systemic drug delivery. Modern powder inhalation systems try to target the required site of action/absorption in the respiratory tract. Large porous particles (LPPs) with a size >5 μm and a low mass density (usually measured as bulk or tapped) of <0.4 g/cm3 can avoid protective lung mechanisms. Their suitable aerodynamic properties make them perspective formulations for deep lung deposition. This experiment studied the effect of spray-drying process parameters on LPP properties. An experimental design of twelve experiments with a central point was realized using the Box–Behnken method. Three process parameters (drying temperature, pump speed, and air speed) were combined on three levels. Particles were formed from a D-mannitol solution, representing a perspective material for lung microparticles. The microparticles were characterized in terms of physical size (laser diffraction), aerodynamic diameter (aerodynamic particle sizer), morphology (SEM), and densities. The novelty and main goal of this research were to describe how the complex parameters of the spray-drying process affect the properties of mannitol LPPs. New findings can provide valuable data to other researchers, leading to the easy tuning of the properties of spray-dried particles by changing the process setup

    Development and Comparison of Various Coated Hard Capsules Suitable for Enteric Administration to Small Patient Cohorts

    No full text
    Pharmaceutical technology offers several options for protecting substances from acidic environments, such as encapsulation in enteric capsules or dosage form with enteric coating. However, commercial enteric capsules do not always meet limits for pharmacopeial delayed release, and the coating process is generally challenging. Preparing small enteric batches suitable for clinical use is, therefore, an unsolved problem. This experiment offers a simple coating process of DRcapsTM capsules based on hypromellose (HPMC) and gellan gum to achieve small intestine administration. In addition, DRcapsTM capsules were compared to hard gelatin capsules to evaluate the suitability of the coating method. Both capsules were immersed in dispersions of Eudragit® S 100, Acryl-EZE®, and Cellacefate at concentrations of 10.0, 15.0, and 20.0% and dried. Coated capsules were evaluated by electron microscopy, disintegration, and dissolution test with a two-step pH change (from 1.2 to 6.8, then to 7.5) to simulate passage through the digestive tract. DRcapsTM capsules coated with Eudragit® S and Cellacefate achieved acid resistance. While samples coated with Eudragit® S released their contents within 360 min at pH 6.8 (small intestine), regardless of polymer concentration, capsules with 15.0 and 20.0% coatings of Cellacefate released content at pH 7.5 (colon) within 435 and 495 min, respectively

    Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis

    No full text
    Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus—Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility

    Technology of Processing Plant Extracts Using an Aluminometasilicate Porous Carrier into a Solid Dosage Form

    No full text
    A method of preparing tablets called liquisolid technique is currently emerging. In these formulations, an important role is played by porous carriers, which are the basic building blocks of liquisolid systems (LSSs). The most common are microcrystalline cellulose (MCC), magnesium aluminometasilicates, silica aerogels, mesoporous silicates, clays, etc. In this study, magnesium aluminometasilicate is used to prepare modified LSS formulations with plant extracts as model drugs dissolved in water (W) or ethanol (E). The modification involves drying tablets in a microwave (MW) and hot air dryer (HA) for a specified period. Powder blends and tablets were evaluated for physical properties, and their antioxidant activity (AA) was measured in a modified dissolution by ferric reducing antioxidant power assay (FRAP). PLS and ANOVA were used to compare tablets properties depending on the composition and technology. The experiment is based on a previous one, in which the plant extracts were processed into tablets using a similar method. Therefore, extending the study to include more plants and the robust statistical evaluation and comparison of the products was a procedure to justify the suitability of the presented method for a wide range of liquid plant extracts. As a result, we obtained tablets with excellent physical properties, including a short disintegration and dissolution, which is problematic in tableted extracts

    Utilization of Pharmaceutical Technology Methods for the Development of Innovative Porous Metasilicate Pellets with a Very High Specific Surface Area for Chemical Warfare Agents Detection

    No full text
    Pharmaceutical technology offers various dosage forms that can be applied interdisciplinary. One of them are spherical pellets which could be utilized as a carrier in emerging second-generation detection tubes. This detection system requires carriers with high specific surface area (SSA), which should allow better adsorption of toxic substances and detection reagents. In this study, a magnesium aluminometasilicate with high SSA was utilized along with various concentrations of volatile substances (menthol, camphor and ammonium bicarbonate) to increase further the carrier SSA after their sublimation. The samples were evaluated in terms of physicochemical parameters, their morphology was assessed by scanning electron microscopy, and the Brunauer–Emmett–Teller (BET) method was utilized to measure SSA. The samples were then impregnated with a detection reagent o-phenylenediamine-pyronine and tested with diphosgene. Only samples prepared using menthol or camphor were found to show red fluorescence under the UV light in addition to the eye-visible red-violet color. This allowed the detection of diphosgene/phosgene at a concentration of only 0.1 mg/m3 in the air for samples M20.0 and C20.0 with their SSA higher than 115 m2/g, thus exceeding the sensitivity of the first-generation DT-12 detection tube

    Second-Generation Phosgene and Diphosgene Detection Tube

    No full text
    We have developed a second-generation detection tube for colorimetric and fluorescence detection of phosgene and diphosgene in air. The tube is packed with pellets made of a mixture of microcrystalline cellulose and magnesium aluminum metasilicate treated with a suitable monoterpene (camphor, menthol) to increase porosity and specific surface area. We impregnated the pellets with a specific o-phenylenediamine-pyronin (PY-OPD) based reagent. The detector with this novel indication charge enables phosgene or diphosgene to be selectively and sensitively detected at concentrations lower than as would those posing acute health risk. Owing to the analytical colorimetric and, at the same time, fluorescence signal, the detector is very robust while featuring good sensitivity and variability. The colorimetric limits of detection were 0.3 mg/m3 (tristimulus colorimeter), resp. 5 mg/m3 (with the naked eye), fluorescence detection limits of 0.3 mg/m3 (with the naked eye), all at an air sample volume of 1 dm3. The response was practically immediate, acid vapors and gases, or diethyl chlorophosphate as a simulant of nerve warfare chemical agents, were disruptive
    corecore