2 research outputs found
Assessing the Impact of Spatio-temporal Drought Regimes Using Timescale Standardized Precipitation Index in Malawi
This study assessed the temporal and spatial drought regimes in Kasungu Agricultural Development Division from 1977 to 2017. The previous studies in Malawi only used the Percentile Index such that other indices including the timescale standardized precipitation index were not considered for drought analysis. This study bridged this gap by using 3-month and 6-month Standardized Precipitation Indices in Drought Monitoring and Prediction software. This study found that the rainfall patterns are highly variable with decreasing trends as determined by high coefficient of variation values (> 0.5). These variations have subjected the region to frequent mild and moderate meteorological droughts. Based on driest years, the respective maximum drought severities were 5,358 in 1994, 3,638 in 1999, 3,492 in 2005 and 3,112 in 2015. Results suggest that drought severity is highly correlated to the rainfall variations in the corresponding districts. This study recommends usage of timescale indices to aid drought monitoring
Towards precision irrigation management: A review of GIS, remote sensing and emerging technologies
Irrigation is the artificial application of water to crops to supply moisture. With rising drought indices and rapid population expansion, the need for irrigation water for food production is growing. Nonetheless, irrigated agriculture is battling several issues that have resulted in poor performance, inefficient water usage, and low crop water production. Improving water use efficiency in irrigated agriculture necessitates using technology that decreases water losses, matches available supplies to demand, and tracks performance. Geographical Information Systems (GIS) and Remote Sensing (RS) allow for effectively managing water and land resources for irrigation. Current GIS and RS uses in irrigation systems are covered in this study, covering land suitability for irrigation, crop water needs, irrigation scheduling, performance evaluation, and other related applications. The future potential of GIS and RS applications for sustainable irrigation water management are highlighted. This paper offers relevant information for researchers, irrigators, and policymakers on using GIS and RS in irrigation water management and how technological improvements will change irrigation water management to enhance water usage efficiency