2 research outputs found

    Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications

    Get PDF
    A Doppler ultrasound is a noninvasive test that can be used to estimate the blood flow through the vessels. Presently, few flow phantoms are being used to be qualified for long-term utilize and storage with high physiological flow rate Doppler ultrasound. The main drawback of the two hydrogel materials items (Konjac (K) and carrageenan (C) (KC)) that it is not fit for long-term storage and easy to deteriorate. Thus, this research study focuses on the characterization and construction of a robust and elastic wall-less flow phantom with suitable acoustical properties of TMM. The mechanisms for the fabrication of a wall-less flow phantom utilizing a physically strong material such as K, C, and gelatin (bovine skin)-based TMM were explained. In addition, the clinical ultrasound (Hitachi Avius (HI)) system was used as the main instrument for data acquisition. Vessel mimicking material (VMM) with dimensions of 15.0 mm depth equal to those of human common carotid arteries (CCA) were obtained with pulsatile flow. The acoustical properties (speed of sound and attenuation were 1533±2 m/s and 0.2 dB/cm. MHz, respectively) of a new TMM were agreed with the IEC 61685 standards. Furthermore, the velocity percentages error were decreased with increase in the Doppler angle (the lowest % error (3%) it was at 53◦). The gelatin from bovine skin was a proper material to be added to KC to enhance the strength of TMM during for long-term utilize and storage of high-flow of blood mimicking Fluid (BMF). This wall-less flow phantom will be a suitable instrument for examining in-vitro research studies

    Biostimulation Effects and Temperature Variation in Stimulated Dielectric Substance (Diabetic Blood Comparable to Non-Diabetic Blood) Based on the Specific Absorption Rate (SAR) in Laser Therapy

    No full text
    Human blood exposed to irradiation absorbs electromagnetic energy which consequently effect temperature variation. The evaluation of Specific Absorption Rate (SAR) of human blood helps to ascertain the values for optimum laser power, time, and temperature variation for fair therapy to avoid blood-irradiation pollution but to enhance its rheological properties when using lasers. Prior knowledge of blood SAR evaluating its dielectric properties is significant, but this is under investigation. We investigate the appropriate SAR threshold value as affected by temperature variation using fundamental blood dielectric parameters to optimize the effect of low-level laser therapy based on physiological and morphological changes of the stimulated diabetic blood. Studies were carried out with Agilent 4294A impedance analyser at frequencies (40Hz – 30 MHz) and designed cells (cuvettes) comprises of electrodes were used in the pre- and post-irradiations measurements. At different laser power outputs, blood samples were subjected to various irradiation durations using portable laser diode-pumped solid state of wavelength 532 nm. Results showed laser at low energy is capable of moderating morphologically the proportion of abnormal diabetic red blood cells. Hence, there is a significant effect using a laser at low energy, as non-medicinal therapy in controlling diabetic health conditions. The positive biostimulation effects on the irradiated diabetic blood occurred within absorbance threshold SAR values range of 0.140?0.695 W/kg and average temperatures range of 24.2?28.0 0C before blood saturation absorbance peak. There is morphological stimulation at a laser power of 50 mW for an exposure time of 10–15 minutes and 60 mW for 5–10 minutes of laser therapy that demonstrates better blood rejuvenated conditions. This occurred within the threshold SAR of 0.140?0.695 W/kg and average temperatures range of 24.2?28.0 0C. Therefore, the diabetic blood irradiated using laser output powers of 70 and 80 mW during exposure durations of 5,10, 15 and 20 minutes rather bio-inhibits positive blood stimulation which has resulted to crenation due to excessive irradiation
    corecore