514 research outputs found

    UIR-band emission from M supergiants

    Get PDF
    We have obtained 10−μm spectra of 16 M supergiants, 15 of them in the h and χ Per association. All of the stars exhibit silicate emission features, but in addition seven of the stars show narrow UIR (unidentified infrared) band emission features, at 11.3 μm⁠, 8.65 μm and other wavelengths, which are normally associated with carbon-rich media. Not only are these the coolest objects to have been found to exhibit UIR-band emission, but the outflows from these classical oxygen-rich stars should form only O-rich particles according to equilibrium condensation theory. We interpret our results in terms of the non-equilibrium chemistry model by Beck et al., whereby chromospheric UV radiation can liberate some atomic carbon via the photodissociation of CO molecules, enabling the formation of carbon-rich species as well as silicates. Such a chromospheric UV radiation field could also provide the photons needed to excite the observed UIR-band emission

    Silicate and hydrocarbon emission from Galactic M supergiants

    Get PDF
    Following our discovery of unidentified infrared (UIR) band emission in a number of M supergiants in h and χ Per, we have obtained 10-μm spectra of a sample of 60 galactic M supergiants. Only three new sources, V1749 Cyg, UW Aql and IRC+40 427, appear to show the UIR bands; the others show the expected silicate emission or a featureless continuum. The occurrence of UIR-band emission in M supergiants is therefore much higher in the h and χ Per cluster than in the Galaxy as a whole. Possible explanations for the origin and distribution of UIR bands in oxygen-rich supergiants are discussed. We use our spectra to derive mass-loss rates ranging from 10−8 to 10−4 M⊙ yr−1 for the new sample, based on the power emitted in the silicate feature. The relationship between mass-loss rate and luminosity for M supergiants is discussed, and correlations are explored between their mid-infrared emission properties

    Optical, infrared and millimetre-wave properties of Vega-like systems - III. Models with thermally spiking grains

    Get PDF
    Vega-like stars are main-sequence stars that exhibit excess IR emission due to circumstellar dust grains which are probably distributed in discs. We have recently published an obser- vational data base for a large sample of candidate Vega-like systems, comprising optical, near- IR and mm/submm-wave photometry, and mid-IR spectra. In a previous paper we presented radiative transfer models of eight sources from our sample that had low fractional excess luminosities. Here we present models of a further eight sources, all with large fractional excess luminosities dominated by excess emission at near-IR wavelengths. It was found that no single distribution of dust grains at thermal equilibrium in a disc could simultaneously match the excess emission at near-IR and longer wavelengths. We attempted to model the near-IR emission as due to thermally spiking small grains, which can temporarily attain the high temperatures required to produce excess near-IR emission. A near-IR spectrum of SAO 186777 shows the 3.3-μm UIR emission band, confirming our earlier detection of UIR emission at longer wavelengths, and suggesting that small carbonaceous particles are responsible for some of the near-IR emission. The thermally spiking models were only partially successful and many of the sources required the presence of grains emitting in thermal equilibrium at ∼ 1000- 1500 K. These grains must either be located very close to the stars (<1 au), or else be powered by accretion luminosity. Calculations of the optical depths of the model discs suggest the discs are optically thick at visual wavelengths; optically thick modelling of these sources is desirable. The discs are optically thin at mm wavelengths, allowing us to confirm the presence of large grains in the discs. The stars presented in this paper may well be younger than the prototype Vega-like stars

    SCUBA photometry of candidate Vega-like sources

    Get PDF
    New SCUBA measurements at millimetre wavelengths are presented for a sample of Vega-like stars. Six stars were detected, while sensitive upper limits were obtained for a further 11 sources. Most of the sample selected from a recent catalogue of Vega-like stars have infrared excesses similar to those of the prototype Vega-like stars α Lyr and α PsA. Their IR–submm spectral indices are steep, indicating that the submm emission from the discs is dominated by grains which are smaller than the wavelength of observation and that only small grains exist in those dusty discs. HD 98800 has an IR–submillimetre spectral index of less than two, which suggests that grains have grown to more than 0.3 mm in size. Hipparcos parallax data for HD 42137 and HD 123160 suggest that these two stars are giants rather than dwarfs, similar to the situation previously found for HD 233517. Dust masses, or upper limits, were derived for the sample; these indicate that most of the sources do not have as much dust as Herbig Ae/Be or T Tauri stars, but are likely to have dust masses comparable to those of the prototype Vega-like stars

    CO emission from shock and PDR in C-rich PN and post-AGB objects

    Get PDF
    The LWS full grating scans of the PN, NGC 7027, and post-AGB objects, GL618 and GL2688 reveal a forest of lines which are identified as CO rotational lines. These lines are used as diagnostics for warm gas around these objects. For NGC 7027 and GL 618, the hot central star is the source of the ionizing photons, creating a PDR. GL2688 is a cooler post-AGB star with evidence of a fast wind which results in shock heated gas. From the CO observations, we can estimate the density of the molecular layer. In agreement with earlier work, we found that the molecular layer is warm (T~ 350-600 K) and dense (n~ 107 cm-3). This may have implications on mass loss during the last stage of the evolution before stars evolve off the AGB

    The Dust Disk around the Vega-Excess Star SAO 26804

    Get PDF
    We present multiwaveband observations of the K2 Vega-excess star SAO 26804 (= HD 233517). These include James Clerk Maxwell Telescope millimeter-wave photometry, plus spectra in the 8-13 microns and 18-24 microns atmospheric windows, an image at a wavelength of 10 microns through a broadband N filter and near-IR (JHKLL'M) photometry all taken at the United Kingdom Infrared Telescope. The source is resolved at 10 microns, and we can confirm with these observations that the IR excess seen in IRAS observations of this source is associated with the optical star. The image is consistent with the dust being confined to a disk with Full Width at Half Maximum (FWHM) 1.5 sec on the major axis, with an inclination angle of less than 30 deg away from edge-on. This represents the first confirmation that the dust in a Vega-excess star other than beta Pic is confined to a disk geometry. We present models of the source which show that many of the properties of the disk and the dust in it are similar to those which we have previously derived for the disk around SAO 179815, but that there are some very small grains in the disk around the star which give around SAO 179815, but that there are some very small grains in the disk around the star which give rise to a very prominent and narrow silicate dust feature at 9.7 microns and to so-called unidentified infrared bands in the 10 micron region. The larger grains are composed of a mixture of amorphous carbon and silicate with an abundance ratio consistent with an interstellar origin. The total mass of dust in the disk is 3.0 x 10-7 solar mass. Finally, our model suggests that there may be a substantial UV and/or soft X-ray flux from SAO 26804, consistent with it being a very young and rather active star

    Water Ice, Silicate, and Polycyclic Aromatic Hydrocarbon Emission Featuresin the Infrared Space Observatory Spectrum of the Carbon-richPlanetary Nebula CPD –56°8032*

    Get PDF
    Combined Infrared Space Observatory Short-Wavelength Spectrometer and Long-Wavelength Spectrometer spectroscopy is presented of the late WC-type planetary nebula nucleus CPD -56°8032 and its carbon-rich nebula. The extremely broad coverage (2.4-197 μm) enables us to recognize the clear and simultaneous presence of emission features from both oxygen- and carbon-rich circumstellar materials. Removing a smooth continuum highlights bright emission bands characteristic of polycyclic aromatic hydrocarbons in the 3-14 μm region, bands from crystalline silicates longward of 18 μm, and the 43 and 62 μm bands of crystalline water ice. We discuss the probable evolutionary state and history of this unusual object in terms of (a) a recent transition from an O-rich to a C-rich outflow following a helium shell flash or (b) a carbon-rich nebular outflow encountering an O-rich comet cloud

    The complete ISO spectrum of NGC 6302

    Get PDF
    We present the combined Infrared Space Observatory Short-Wavelength Spectrometer and Long-Wavelength Spectrometer 2.4-197 μm spectrum of the Planetary Nebula NGC 6302 which contains in addition to strong atomic lines, a series of emission features due to solid state components. The broad wavelength coverage enables us to more accurately identify and determine the properties of both oxygen- and carbon-rich circumstellar dust. A simple model fit was made to determine the abundance and typical temperature of the amorphous silicates, enstatite and forsterite. Forsterite and enstatite do have roughly the same abundance and temperature. The origin and location of the dust in a toroidal disk around the central star are discussed

    Infrared imaging and spectroscopy of the Luminous Blue Variables Wra 751 and AG Car

    Get PDF
    We present ground-based infrared imaging and ISO spectroscopy of the luminous blue variables Wra 751 and AG Car. The images show in both cases a detached shell with a roughly circular distribution of emission. The infrared images of AG Car coincide very well with the optical images. The optical (H[FORMULA]) image of Wra 751 is different from the infrared image; the H[FORMULA] nebula is suggested to be a scattering nebula containing cold dust particles. Fitting both the images and the spectra consistently with a 1-D radiative transfer model, we derive properties of their dust shells. Wra 751 is surrounded by a dust shell with inner and outer radii of 0.17 and 0.34 pc respectively and a dust mass of 0.017 [FORMULA]. The dust shell of AG Car has inner and outer radii of 0.37 and 0.81 pc respectively and a total dust mass of 0.25 [FORMULA]. Dust mass-loss rates during the formation of the shells are 2.7[FORMULA] and 3.4[FORMULA] [FORMULA] yr-1, respectively. The total dust mass and hence the derived dust mass-loss rates are uncertain by at least a factor of two. For AG Car, the derived dust mass and mass-loss rate are higher than previous estimates. This is mainly caused by the fact that a contribution of very large grains ([FORMULA] 10 µm) is needed to explain the flux levels at longer wavelengths. Dust models for both objects fail to explain the flux shortward of 15 to 20 µm: a population of small warm grains, not in thermal equilibrium with the central star is necessary to explain this excess. Similarities between dust shells around Wolf-Rayet stars and Wra 751 and AG Car (mass, grain size population, morphology) suggest a similar formation history and imply an evolutionary connection. A similar connection with red supergiants is suggested on the basis of the dust composition and derived time-averaged mass-loss rates
    corecore