19 research outputs found

    Identification of a cis‐acting element required for shunt‐mediated translational initiation of the Sendai virus Y proteins

    Get PDF
    Shunting is a mechanism that permits translational initiation at internal codons positioned in proximity to a ribosome acceptor sequence. Sendai virus exploits shunting to express a series of proteins that initiate at the fourth and fifth start sites on the P/C mRNA (namely, the Y1 and Y2 proteins, respectively). Shunt‐mediated initiation at these sites is codon independent. In an attempt to characterise the acceptor site, an extensive deletion analysis was performed spanning the entire C ORF. Only mutants flanking the Y1/Y2 start sites exhibited altered shunt phenotypes. Some of these significantly enhanced shunting efficiency to the point where the Y1/Y2 proteins were the major translational products of the mRNA. Additionally, removal of a short region just downstream of the Y2 start codon (referred to as Δ10) ablated all Y protein initiation via shunting but had no effect on Y expression when the AUG codons were viewed by a scanning ribosome. Point mutations introduced into this Δ10 sequence severely perturbed shunt‐mediated initiation. We also provide evidence that changes in this region of the P/C mRNA may be used to modulate Y protein expression levels in different viral strain

    An integrated ontology resource to explore and study host-virus relationships.

    Get PDF
    Our growing knowledge of viruses reveals how these pathogens manage to evade innate host defenses. A global scheme emerges in which many viruses usurp key cellular defense mechanisms and often inhibit the same components of antiviral signaling. To accurately describe these processes, we have generated a comprehensive dictionary for eukaryotic host-virus interactions. This controlled vocabulary has been detailed in 57 ViralZone resource web pages which contain a global description of all molecular processes. In order to annotate viral gene products with this vocabulary, an ontology has been built in a hierarchy of UniProt Knowledgebase (UniProtKB) keyword terms and corresponding Gene Ontology (GO) terms have been developed in parallel. The results are 65 UniProtKB keywords related to 57 GO terms, which have been used in 14,390 manual annotations; 908,723 automatic annotations and propagated to an estimation of 922,941 GO annotations. ViralZone pages, UniProtKB keywords and GO terms provide complementary tools to users, and the three resources have been linked to each other through host-virus vocabulary

    Focus on Translation Initiation of the HIV-1 mRNAs

    No full text
    To replicate and disseminate, viruses need to manipulate and modify the cellular machinery for their own benefit. We are interested in translation, which is one of the key steps of gene expression and viruses that have developed several strategies to hijack the ribosomal complex. The type 1 human immunodeficiency virus is a good paradigm to understand the great diversity of translational control. Indeed, scanning, leaky scanning, internal ribosome entry sites, and adenosine methylation are used by ribosomes to translate spliced and unspliced HIV-1 mRNAs, and some require specific cellular factors, such as the DDX3 helicase, that mediate mRNA export and translation. In addition, some viral and cellular proteins, including the HIV-1 Tat protein, also regulate protein synthesis through targeting the protein kinase PKR, which once activated, is able to phosphorylate the eukaryotic translation initiation factor eIF2α, which results in the inhibition of cellular mRNAs translation. Finally, the infection alters the integrity of several cellular proteins, including initiation factors, that directly or indirectly regulates translation events. In this review, we will provide a global overview of the current situation of how the HIV-1 mRNAs interact with the host cellular environment to produce viral proteins

    Translation of SARS-CoV-2 gRNA Is Extremely Efficient and Competitive despite a High Degree of Secondary Structures and the Presence of an uORF

    No full text
    The SARS-CoV-2 infection generates up to nine different sub-genomic mRNAs (sgRNAs), in addition to the genomic RNA (gRNA). The 5′UTR of each viral mRNA shares the first 75 nucleotides (nt.) at their 5′end, called the leader, but differentiates by a variable sequence (0 to 190 nt. long) that follows the leader. As a result, each viral mRNA has its own specific 5′UTR in term of length, RNA structure, uORF and Kozak context; each one of these characteristics could affect mRNA expression. In this study, we have measured and compared translational efficiency of each of the ten viral transcripts. Our data show that most of them are very efficiently translated in all translational systems tested. Surprisingly, the gRNA 5′UTR, which is the longest and the most structured, was also the most efficient to initiate translation. This property is conserved in the 5′UTR of SARS-CoV-1 but not in MERS-CoV strain, mainly due to the regulation imposed by the uORF. Interestingly, the translation initiation mechanism on the SARS-CoV-2 gRNA 5′UTR requires the cap structure and the components of the eIF4F complex but showed no dependence in the presence of the poly(A) tail in vitro. Our data strongly suggest that translation initiation on SARS-CoV-2 mRNAs occurs via an unusual cap-dependent mechanism

    Factor requirements for translation initiation on the Simian picornavirus internal ribosomal entry site

    No full text
    The Simian picornavirus type 9 (SPV9) 5′-untranslated region (5′ UTR) has been predicted to contain an internal ribosomal entry site (IRES) with structural elements that resemble domains of hepacivirus/pestivirus (HP) IRESs. In vitro reconstitution of initiation confirmed that this 5′ UTR contains an IRES and revealed that it has both functional similarities and differences compared to HP IRESs. Like HP IRESs, the SPV9 IRES bound directly to 40S subunits and eukaryotic initiation factor (eIF) 3, depended on the conserved domain IIId for ribosomal binding and consequently for function, and additionally required eIF2/initiator tRNA to yield 48S complexes that formed elongation-competent 80S ribosomes in the presence of eIF5, eIF5B, and 60S subunits. Toeprinting analysis revealed that eIF1A stabilized 48S complexes, whereas eIF1 induced conformational changes in the 40S subunit, likely corresponding to partial opening of the entry latch of the mRNA-binding channel, that were exacerbated by eIF3 and suppressed by eIF1A. The SPV9 IRES differed from HP IRESs in that its function was enhanced by eIF4A/eIF4F when the IRES was adjacent to the wild-type coding sequence, but was less affected by these factors or by a dominant negative eIF4A mutant when potentially less structured coding sequences were present. Exceptionally, this IRES promoted binding of initiator tRNA to the initiation codon in the P site of 40S subunits independently of eIF2. Although these 40S/IRES/tRNA complexes could not form active 80S ribosomes, this constitutes a second difference between the SPV9 and HP IRESs. eIF1 destabilized the eIF2-independent ribosomal binding of initiator tRNA

    Characterization of two distinct RNA domains that regulate translation of the Drosophila gypsy retroelement

    No full text
    The genomic RNA of the gypsy retroelement from Drosophila melanogaster exhibits features similar to other retroviral RNAs because its 5′ untranslated (5′ UTR) region is unusually long (846 nucleotides) and potentially highly structured. Our initial aim was to search for an internal ribosome entry site (IRES) element in the 5′ UTR of the gypsy genomic RNA by using various monocistronic and bicistronic RNAs in the rabbit reticulocyte lysate (RRL) system and in cultured cells. Results reported here show that two functionally distinct and independent RNA domains control the production of gypsy encoded proteins. The first domain corresponds to the 5′ UTR of the env subgenomic RNA and exhibits features of an efficient IRES (IRES(E)) both in the reticulocyte lysate and in cells. The second RNA domain that encompasses the gypsy insulator can function as an IRES in the rabbit reticulocyte lysate but strongly represses translation in cultured cells. Taken together, these results suggest that expression of the gypsy encoded proteins from the genomic and subgenomic RNAs can be regulated at the level of translation
    corecore