22 research outputs found

    Carbon Monoxide Poisoning Resistance and Structural Stability of Single Atom Alloys

    Get PDF
    Platinum group metals (PGMs) serve as highly active catalysts in a variety of heterogeneous chemical processes. Unfortunately, their high activity is accompanied by a high affinity for CO and thus, PGMs are susceptible to poisoning. Alloying PGMs with metals exhibiting lower affinity to CO could be an effective strategy toward preventing such poisoning. In this work, we use density functional theory to demonstrate this strategy, focusing on highly dilute alloys of PGMs (Pd, Pt, Rh, Ir and Ni) with poison resistant coinage metal hosts (Cu, Ag, Au), such that individual PGM atoms are dispersed at the atomic limit forming single atom alloys (SAAs). We show that compared to the pure metals, CO exhibits lower binding strength on the majority of SAAs studied, and we use kinetic Monte Carlo simulation to obtain relevant temperature programed desorption spectra, which are found to be in good agreement with experiments. Additionally, we consider the effects of CO adsorption on the structure of SAAs. We calculate segregation energies which are indicative of the stability of dopant atoms in the bulk compared to the surface layer, as well as aggregation energies to determine the stability of isolated surface dopant atoms compared to dimer and trimer configurations. Our calculations reveal that CO adsorption induces dopant atom segregation into the surface layer for all SAAs considered here, whereas aggregation and island formation may be promoted or inhibited depending on alloy constitution and CO coverage. This observation suggests the possibility of controlling ensemble effects in novel catalyst architectures through CO-induced aggregation and kinetic trapping

    Elucidating the Stability and Reactivity of Surface Intermediates on Single-Atom Alloy Catalysts

    Get PDF
    Doping isolated single atoms of a platinum-group metal into the surface of a noble-metal host is sufficient to dramatically improve the activity of the unreactive host yet also facilitates the retention of the host’s high reaction selectivity in numerous catalytic reactions. The atomically dispersed highly active sites in these single-atom alloy (SAA) materials are capable of performing facile bond activations allowing for the uptake of species onto the surface and the subsequent spillover of adspecies onto the noble host material, where selective catalysis can be performed. For example, SAAs have been shown to activate C–H bonds at low temperatures without coke formation, as well as selectively hydrogenate unsaturated hydrocarbons with excellent activity. However, to date, only a small subset of SAAs has been synthesized experimentally and it is unclear which metallic combinations may best catalyze which chemical reactions. To shed light on this issue, we have performed a widespread screening study using density functional theory to elucidate the fundamental adsorptive and catalytic properties of 12 SAAs (Ni-, Pd-, Pt-, and Rh-doped Cu(111), Ag(111), and Au(111)). We considered the interaction of these SAAs with a variety of adsorbates often found in catalysis and computed reaction mechanisms for the activation of several catalytically relevant species (H₂, CH₄, NH₃, CH₃OH, and CO₂) by SAAs. Finally, we discuss the applicability of thermochemical linear scaling and the Brønsted–Evans–Polanyi relationship to SAA systems, demonstrating that SAAs combine weak binding with low activation energies to give enhanced catalytic behavior over their monometallic counterparts. This work will ultimately facilitate the discovery and development of SAAs, serving as a guide to experimentalists and theoreticians alike

    Tuning the Product Selectivity of Single-Atom Alloys by Active Site Modification

    Get PDF
    There is widespread interest in developing catalysts with uniform active sites that consist of single atoms, thereby simplifying the reaction mechanism and improving product selectivity. We examine experimentally how CO can be used to modify the active sites on a strong binding single-atom alloy and examine how this in turn impacts product selectivity for a reaction that has two different pathways. Specifically, we find that CO can be used to selectively block isolated Rh atom active sites in a RhCu(111) model single-atom alloy catalyst surface and promote the dehydrogenation pathway for adsorbed ethyl groups by suppressing the hydrogenation pathway

    Controlling Hydrocarbon (De)Hydrogenation Pathways with Bifunctional PtCu Single-Atom Alloys

    Get PDF
    The conversions of surface-bound alkyl groups to alkanes and alkenes are important steps in many heterogeneously catalyzed reactions. On the one hand, while Pt is ubiquitous in industry because of its high activity toward C-H activation, many Pt-based catalysts tend to overbind reactive intermediates, which leads to deactivation by carbon deposition and coke formation. On the other hand, Cu binds intermediates more weakly than Pt, but activation barriers tend to be higher on Cu. We examine the reactivity of ethyl, the simplest alkyl group that can undergo hydrogenation and dehydrogenation via β-elimination, and show that isolated Pt atoms in Cu enable low-temperature hydrogenation of ethyl, unseen on Cu, while avoiding the decomposition pathways on pure Pt that lead to coking. Furthermore, we confirm the predictions of our theoretical model and experimentally demonstrate that the selectivity of ethyl (de)hydrogenation can be controlled by changing the surface coverage of hydrogen

    Mechanistic insights into carbon–carbon coupling on NiAu and PdAu single-atom alloys

    Get PDF
    Carbon–carbon coupling is an important step in many catalytic reactions, and performing sp³–sp³ carbon–carbon coupling heterogeneously is particularly challenging. It has been reported that PdAu single-atom alloy (SAA) model catalytic surfaces are able to selectively couple methyl groups, producing ethane from methyl iodide. Herein, we extend this study to NiAu SAAs and find that Ni atoms in Au are active for C–I cleavage and selective sp³–sp³ carbon–carbon coupling to produce ethane. Furthermore, we perform ab initio kinetic Monte Carlo simulations that include the effect of the iodine atom, which was previously considered a bystander species. We find that model NiAu surfaces exhibit a similar chemistry to PdAu, but the reason for the similarity is due to the role the iodine atoms play in terms of blocking the Ni atom active sites. Specifically, on NiAu SAAs, the iodine atoms outcompete the methyl groups for occupancy of the Ni sites leaving the Me groups on Au, while on PdAu SAAs, the binding strengths of methyl groups and iodine atoms at the Pd atom active site are more similar. These simulations shed light on the mechanism of this important sp3–sp3 carbon–carbon coupling chemistry on SAAs. Furthermore, we discuss the effect of the iodine atoms on the reaction energetics and make an analogy between the effect of iodine as an active site blocker on this model heterogeneous catalyst and homogeneous catalysts in which ligands must detach in order for the active site to be accessed by the reactants

    Controlling a spillover pathway with the molecular cork effect

    Get PDF
    Spillover of reactants from one active site to another is important in heterogeneous catalysis and has recently been shown to enhance hydrogen storage in a variety of materials. The spillover of hydrogen is notoriously hard to detect or control. We report herein that the hydrogen spillover pathway on a Pd/Cu alloy can be controlled by reversible adsorption of a spectator molecule. Pd atoms in the Cu surface serve as hydrogen dissociation sites from which H atoms can spillover onto surrounding Cu regions. Selective adsorption of CO at these atomic Pd sites is shown to either prevent the uptake of hydrogen on, or inhibit its desorption from, the surface. In this way, the hydrogen coverage on the whole surface can be controlled by molecular adsorption at a minority site, which we term a ‘molecular cork’ effect. We show that the molecular cork effect is present during a surface catalysed hydrogenation reaction and illustrate how it can be used as a method for controlling uptake and release of hydrogen in a model storage system

    Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts

    Get PDF
    The atomic scale structure of the active sites in heterogeneous catalysts is central to their reactivity and selectivity. Therefore, understanding active site stability and evolution under different reaction conditions is key to the design of efficient and robust catalysts. Herein we describe theoretical calculations which predict that carbon monoxide can be used to stabilize different active site geometries in bimetallic alloys and then demonstrate experimentally that the same PdAu bimetallic catalyst can be transitioned between a single-atom alloy and a Pd cluster phase. Each state of the catalyst exhibits distinct selectivity for the dehydrogenation of ethanol reaction with the single-atom alloy phase exhibiting high selectivity to acetaldehyde and hydrogen versus a range of products from Pd clusters. First-principles based Monte Carlo calculations explain the origin of this active site ensemble size tuning effect, and this work serves as a demonstration of what should be a general phenomenon that enables in situ control over catalyst selectivity

    Preparation, Structure, and Surface Chemistry of Ni-Au Single Atom Alloys

    Get PDF
    Ni/Au is an alloy combination that while, immiscible in the bulk, exhibits a rich array of surface geometries that may offer improved catalytic properties. It has been demonstrated that the addition of small amounts of Au to Ni tempers its reactivity and reduces coking during the steam reforming of methane. Herein, we report the first successful preparation of dilute Ni-Au alloys (up to 0.04 ML) in which small amounts of Ni are deposited on, and alloyed into, Au(111) using physical vapor deposition. We find that the surface structure can be tuned during deposition via control of the substrate temperature. By adjusting the surface temperature in the 300-650 K range, we are able to produce first Ni islands, then mixtures of Ni islands and Ni-Au surface alloys, and finally, when above 550 K, predominantly island-free Ni-Au single atom alloys (SAAs). Low-temperature scanning tunneling microscopy (STM) combined with density functional theory calculations confirm that the Ni-Au SAAs formed at high temperature correspond to Ni atoms exchanged with surface Au atoms. Ni-Au SAAs form preferentially at the elbow regions of the Au(111) herringbone reconstruction, but at high coverage also appear over the whole surface. To investigate the adsorption properties of Ni-Au SAAs, we studied the adsorption and desorption of CO using STM which allowed us to determine at which atomic sites the CO adsorbs on these heterogeneous alloys. We find that small amounts of Ni in the form of single atoms increases the reactivity of the substrate by creating single Ni sites in the Au surface to which CO binds significantly more strongly than Au. These results serve as a guide in the design of surface architectures that combine Au's weak binding and selective chemistry with localized, strong binding Ni atom sites that serve to increase reactivity

    First-principles design of a single-atom–alloy propane dehydrogenation catalyst

    Get PDF
    The complexity of heterogeneous catalysts means that a priori design of new catalytic materials is difficult, but the well-defined nature of single-atom–alloy catalysts has made it feasible to perform unambiguous theoretical modeling and precise surface science experiments. Herein we report the theory-led discovery of a rhodium-copper (RhCu) single-atom–alloy catalyst for propane dehydrogenation to propene. Although Rh is not generally considered for alkane dehydrogenation, first-principles calculations revealed that Rh atoms disperse in Cu and exhibit low carbon-hydrogen bond activation barriers. Surface science experiments confirmed these predictions, and together these results informed the design of a highly active, selective, and coke-resistant RhCu nanoparticle catalyst that enables low-temperature nonoxidative propane dehydrogenation
    corecore