8 research outputs found

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Recent Developments in Optical and Thermal Performance of Direct Absorption Solar Collectors

    Full text link
    Solar energy is the most promising green energy resource, as there is an enormous supply of solar power. It is considered a good potential solution for energy crises in both domestic and industrial sectors. Nowadays, many types of solar systems are used for harvesting solar energy. Most of the research is focused on direct absorption solar collectors (DASCs) due to their ability to capture more solar energy. The effectiveness of DASCs is dependent on various factors, such as working fluid properties, geometry, and operating parameters. This review summarizes the impact of different design and operating parameters on the performance of DASCs. Many effective parameters are considered and their impact on optical and thermal properties is summarized. The influence of working fluid parameters, such as base fluid type, nanoparticle type, nanoparticle size, nanoparticle shape, and nanoparticle concentration on heat transfer performance, was discussed and their optimum range was suggested. The effects of collector dimensions and many novel design configurations were discussed. The effect of the most important operating parameters, such as temperature, flow rate, flow regime, and irradiance on collector performance, was briefly summarized

    Influence of environmental changes on power quality disturbances in Hybrid Renewable Energy System

    Get PDF
    Environmental changes profoundly affect PQ disturbances in Hybrid Renewal Energy Systems (HRES). The stand-alone hybrid renewable energy system is increasing its share of the energy sector. This process is now opening doors for research into this area. The power produced by these sources, especially solar and wind systems, depends on environmental conditions. Consequently, these systems behave differently under varying conditions. The research will focus on how these environmental changes can influence disturbances to power quality in the systems. The main focus will be on total harmonic distortion and other related power quality issues, including voltage sag, swell, and changes in current values. The research will be conducted by using MATLAB simulation of the system. The simulation will be tested utilising different environmental conditions, and data will be collected for analysis. The research would reveal which environmental factors will guide the hybrid system more than the other factors. To what extent do these environmental changes influence the PQ disturbances? The major contributing factor was irradiance level in the case of solar power and wind speed concerning wind power. The research will help to improve power supply in a stand-alone HRES

    An Organizational-Based Model and Agent-Based Simulation for Co-Traveling at an Aggregate Level

    Full text link
    Carpooling is an environmentally friendly and sustainable emerging traveling mode that enables commuters to save travel time and travel expenses. In order to co-travel, individuals or agents need to communicate, interpret information, and negotiate to achieve co-operation to find matching partners. This paper offers the scheme of a carpooling model for a set of candidate carpoolers. The model is interpreted using an agent-based simulation to analyze several effects of agents’ interaction and behavior adaptations. Through communication and negotiation processes, agents can reach dynamic contracts in an iterative manner. The start of the negotiation process relies on the agents’ intention to emit an invitation for carpooling. The realization of the negotiation process depends significantly on the departure time choice, on the agents’ profile, and on route optimization. The schedule or agenda adaptation relies on the preferences among the realistic schedules of the agents and usually depends on both the participation of the trip and on the time of day. From the considerations, it is possible to reveal the actual representation of the possible carpoolers during the simulated period. Experiments demonstrate the nearly-polynomial relationship between computation time and the number of agents

    Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan

    Full text link
    Crop nutrient management is an essential component of any cropping system. With increasing concerns over environmental protection, improvement in fertilizer use efficiencies has become a prime goal in global agriculture system. Phosphorus (P) is one of the most important nutrients, and strategies are required to optimize its use in important arable crops like cotton (Gossypium hirsutum L.) that has great significance. Sustainable P use in crop production could significantly avoid environmental hazards resulting from over-P fertilization. Crop growth modeling has emerged as an effective tool to assess and predict the optimal nutrient requirements for different crops. In present study, Decision Support System for Agro-technology Transfer (DSSAT) sub-model CSM-CROPGRO-Cotton-P was evaluated to estimate the observed and simulated P use in two cotton cultivars grown at three P application rates under the semi-arid climate of southern Punjab, Pakistan. The results revealed that both the cultivars performed best at medium rate of P application (57\ua0kg\ua0ha-1) in terms of days to anthesis, days to maturity, seed cotton yield, total dry matter production, and harvest index during 2013 and 2014. Cultivar FH-142 performed better than MNH-886 in terms of different yield components. There was a good agreement between observed and simulated days to anthesis (0 to 1\ua0day), days to maturity (0 to 2\ua0days), seed cotton yield, total dry matter, and harvest index with an error of -4.4 to 15%, 12-7.5%, and 13-9.5% in MNH-886 and for FH-142, 4-16%, 19-11%, and 16-8.3% for growing years 2013 and 2014, respectively. CROPGRO-Cotton-P would be a useful tool to forecast cotton yield under different levels of P in cotton production system of the semi-arid climate of Southern Punjab
    corecore