25 research outputs found

    Financial development and environmental quality: The way forward

    Get PDF
    The present paper re-examines the asymmetric impact of financial development on environmental quality in Pakistan for the period 1985Q1 to 2014Q4. A comprehensive index of financial development is generated using Bank- and Stock market-based financial development indicators. The results show that inefficient use of energy adversely affects the environmental quality. This suggests adoption of energy efficient technology at both production and consumption levels. These technologies would be helpful to improve environmental quality, enhance the productivity in long-run and save energy. Bank-based financial development also impedes the environment. The government should encourage lenders to ease the funding for energy sector and allocate financial resources for environment friendly businesses rather than wasting them in consumer financing

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    This online publication has been corrected. The corrected version first appeared at thelancet.com on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein

    Macrophage S1PR1 Signaling Alters Angiogenesis and Lymphangiogenesis During Skin Inflammation

    No full text
    The bioactive lipid sphingosine-1-phosphate (S1P), along with its receptors, modulates lymphocyte trafficking and immune responses to regulate skin inflammation. Macrophages are important in the pathogenesis of psoriasiform skin inflammation and express various S1P receptors. How they respond to S1P in skin inflammation remains unknown. We show that myeloid specific S1P receptor 1 (S1PR1) deletion enhances early inflammation in a mouse model of imiquimod-induced psoriasis, without altering the immune cell infiltrate. Mechanistically, myeloid S1PR1 deletion altered the formation of IL-1β, VEGF-A, and VEGF-C, and their receptors’ expression in psoriatic skin, which subsequently lead to reciprocal regulation of neoangiogenesis and neolymphangiogenesis. Experimental findings were corroborated in human clinical datasets and in knockout macrophages in vitro. Increased blood vessel but reduced lymph vessel density may explain the exacerbated inflammatory phenotype in conditional knockout mice. These findings assign a novel role to macrophage S1PR1 and provide a rationale for therapeutically targeting local S1P during skin inflammation

    MicroRNAs as emerging regulators of signaling in the tumor microenvironment

    No full text
    A myriad of signaling molecules in a heuristic network of the tumor microenvironment (TME) pose a challenge and an opportunity for novel therapeutic target identification in human cancers. MicroRNAs (miRs), due to their ability to affect signaling pathways at various levels, take a prominent space in the quest of novel cancer therapeutics. The role of miRs in cancer initiation, progression, as well as in chemoresistance, is being increasingly investigated. The canonical function of miRs is to target mRNAs for post-transcriptional gene silencing, which has a great implication in first-order regulation of signaling pathways. However, several reports suggest that miRs also perform non-canonical functions, partly due to their characteristic non-coding small RNA nature. Examples emerge when they act as ligands for toll-like receptors or perform second-order functions, e.g., to regulate protein translation and interactions. This review is a compendium of recent advancements in understanding the role of miRs in cancer signaling and focuses on the role of miRs as novel regulators of the signaling pathway in the TME

    Exosomal and Non-Exosomal MicroRNAs: New Kids on the Block for Cancer Therapy

    No full text
    MicroRNAs have been projected as promising tools for diagnostic and prognostic purposes in cancer. More recently, they have been highlighted as RNA therapeutic targets for cancer therapy. Though miRs perform a generic function of post-transcriptional gene regulation, their utility in RNA therapeutics mostly relies on their biochemical nature and their assembly with other macromolecules. Release of extracellular miRs is broadly categorized into two different compositions, namely exosomal (extracellular vesicles) and non-exosomal. This nature of miRs not only affects the uptake into target cells but also poses a challenge and opportunity for RNA therapeutics in cancer. By virtue of their ability to act as mediators of intercellular communication in the tumor microenvironment, extracellular miRs perform both, depending upon the target cell and target landscape, pro- and anti-tumor functions. Tumor-derived miRs mostly perform pro-tumor functions, whereas host cell- or stroma-derived miRs are involved in anti-tumor activities. This review deals with the recent understanding of exosomal and non-exosomal miRs in the tumor microenvironment, as a tool for pro- and anti-tumor activity and prospective exploit options for cancer therapy

    Sphingosine kinases are involved in macrophage NLRP3 inflammasome transcriptional induction

    No full text
    Recent studies suggested an important contribution of sphingosine-1-phospate (S1P) signaling via its specific receptors (S1PRs) in the production of pro-inflammatory mediators such as Interleukin (IL)-1β in cancer and inflammation. In an inflammation-driven cancer setting, we previously reported that myeloid S1PR1 signaling induces IL-1β production by enhancing NLRP3 (NOD-, LRR- and Pyrin Domain-Containing Protein 3) inflammasome activity. However, the autocrine role of S1P and enzymes acting on the S1P rheostat in myeloid cells are unknown. Using human and mouse macrophages with pharmacological or genetic intervention we explored the relative contribution of sphingosine kinases (SPHKs) in NLRP3 inflammasome activity regulation. We noticed redundancy in SPHK1 and SPHK2 activities towards macrophage NLRP3 inflammasome transcriptional induction and IL-1β secretion. However, pharmacological blockade of both kinases in unison completely abrogated NLRP3 inflammasome induction and IL-1β secretion. Interestingly, human and mouse macrophages demonstrate varied responses towards SPHKs inhibition and IL-1β secretion. Clinical datasets of renal cell carcinoma and psoriasis patients showed a positive correlation between enzymes affecting the S1P rheostat with NLRP3 inflammasome components expression, which corroborates our finding. Our data provide a better understanding on the role of SPHKs and de novo synthesized S1P in macrophage NLRP3 inflammasome activatio

    S1P provokes tumor lymphangiogenesis via macrophage-derived mediators such as IL-1β or lipocalin-2

    Get PDF
    A pleiotropic signaling lipid, sphingosine-1-phosphate (S1P), has been implicated in various pathophysiological processes supporting tumor growth and metastasis. However, there are only a few descriptive studies suggesting a role of S1P in tumor lymphangiogenesis, which is critical for tumor growth and dissemination. Corroborating own data, the literature suggests that apoptotic tumor cell-derived S1P alters the phenotype of tumor-associated macrophages (TAMs) to gain protumor functions. However, mechanistically, the role of TAM-induced lymphangiogenesis has only been poorly described, mostly linked to the production of lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C) and VEGF-D, or transdifferentiation into lymphatic endothelial cells. Recent findings highlight a rather underappreciated role of S1P in tumor lymphangiogenesis, referring to the production of interleukin-1β (IL-1β) and lipocalin-2 (LCN2) by a tumor-promoting macrophage phenotype. In this review, we aim to provide to the readers with the current understanding of the molecular mechanism how apoptotic cell-derived S1P triggers TAMs to promote lymphangiogenesis

    Therapeutic targeting of microRNAs in the tumor microenvironment

    No full text
    The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside

    MicroRNA - a tumor trojan horse for tumor-associated macrophages

    No full text
    MicroRNAs (miRs) significantly contribute to the regulation of gene expression, by virtue of their ability to interact with a broad, yet specific set of target genes. MiRs are produced and released by almost every cell type and play an important role in horizontal gene regulation in the tumor microenvironment (TME). In the TME, both tumor and stroma cells cross-communicate via diverse factors including miRs, which are taking central stage as a therapeutic target of anti-tumor therapy. One of the immune escape strategies adopted by tumor cells is to release miRs as a Trojan horse to hijack circulating or tumor-localized monocytes/macrophages to tune them for pro-tumoral functions. On the other hand, macrophage-derived miRs exert anti-tumor functions. The transfer of miRs from host to recipient cells depends on the supramolecular structure and composition of miR carriers, which determine the distinct uptake mechanism by recipient cells. In this review, we provide a recent update on the miR-mediated crosstalk between tumor cells and macrophages and their mode of uptake in the TME

    Macrophage S1PR1 signaling alters angiogenesis and lymphangiogenesis during skin inflammation

    No full text
    The bioactive lipid sphingosine-1-phosphate (S1P), along with its receptors, modulates lymphocyte trafficking and immune responses to regulate skin inflammation. Macrophages are important in the pathogenesis of psoriasiform skin inflammation and express various S1P receptors. How they respond to S1P in skin inflammation remains unknown. We show that myeloid specific S1P receptor 1 (S1PR1) deletion enhances early inflammation in a mouse model of imiquimod-induced psoriasis, without altering the immune cell infiltrate. Mechanistically, myeloid S1PR1 deletion altered the formation of IL-1β, VEGF-A, and VEGF-C, and their receptors’ expression in psoriatic skin, which subsequently lead to reciprocal regulation of neoangiogenesis and neolymphangiogenesis. Experimental findings were corroborated in human clinical datasets and in knockout macrophages in vitro. Increased blood vessel but reduced lymph vessel density may explain the exacerbated inflammatory phenotype in conditional knockout mice. These findings assign a novel role to macrophage S1PR1 and provide a rationale for therapeutically targeting local S1P during skin inflammation
    corecore