22 research outputs found

    The burden of anxiety and depression among patients with chronic rheumatologic disorders at a tertiary care hospital clinic in Karachi, Pakistan

    Get PDF
    Objectives: To study the burden of anxiety and depression as a comorbid among patients of chronic rheumatological disorders and to investigate possible determinants of depression and anxiety.Methods: It was a cross-sectional study conducted at the rheumatology clinic of The Aga Khan University Hospital (AKUH) Karachi, Pakistan. With convenient sampling, 111 patients who fulfilled inclusion/exclusion criteria were screened for anxiety and depression with help of Aga Khan University Anxiety and Depression Scale (AKUADS). The data was entered and analyzed by Statistical Package for Social Sciences (Version 10.0).Results: The population consisted mainly of middle aged (mean age 41) females (80.2%). The most common diagnosis was rheumatoid arthritis 57% followed by systemic lupus erythmatosis 17% and systemic sclerosis 9%. The permanent joint deformity was present in 33.3% patients and 36.9% patients were suffering from active disease with pain and inflammation. The frequency of anxiety and depression was 65.8%. Educational qualification, permanent joint deformity, active inflammation and time elapsed since diagnosis had significant association with anxiety and depression. Marital Status, gender, economic activity and monthly family income had no effect on the frequency of anxiety and depression.CONCLUSION: Almost two third of patients with chronic rheumatological disorders, also suffered from a concomitant mood disorder. Systematic evaluation of all patients for mood disorders and psychological distress in rheumatology clinics is highly recommended

    Adaptation of the Recent Life Changes Questionnaire (RLCQ) to measure stressful life events in adults residing in an urban megapolis in Pakistan

    Get PDF
    Background: Contextually relevant stressful life events are integral to the quantification of stress. None such measures have been adapted for the Pakistani population. Methods: The RLCQ developed by Richard Rahe measures stress of an individual through recording the experience of life changing events. We used qualitative methodology in order to identify contextually relevant stressors in an open ended format, using serial in-depth interviews until thematic saturation of reported stressful life events was achieved. In our next phase of adaptation, our objective was to scale each item on the questionnaire, so as to weigh each of these identified events, in terms of severity of stress. This scaling exercise was performed on 200 random participants residing in the four communities of Karachi namely Kharadar, Dhorajee, Gulshan and Garden. For analysis of the scaled tool, exploratory factor analysis was used to inform structuring. Finally, to complete the process of adaption, content and face validity exercises were performed. Content validity by subject expert review and face validity was performed by translation and back translation of the adapted RLCQ. This yielded our final adapted tool. Results: Stressful life events emerging from the qualitative phase of the study reflect daily life stressors arising from the unstable socio-political environment. Some such events were public harassment, robbery/theft, missed life opportunities due to nepotism, extortion and threats, being a victim of state sponsored brutality, lack of electricity, water, sanitation, fuel, destruction due to natural disasters and direct or media based exposure to suicide bombing in the city. Personal or societal based relevant stressors included male child preference, having an unmarried middle aged daughter, lack of empowerment and respect reported by females. The finally adapted RLCQ incorporated Environmental Stress as a new category. Conclusion: The processes of qualitative methodology, in depth interview, community based scaling and face and content validity yielded an adapted RLCQ that represents contextually relevant life stress for adults residing in urban Pakistan

    Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell

    No full text
    Among various photovoltaic devices, the poly 3, 4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS) and silicon nanowire (SiNW)-based hybrid solar cell is getting momentum for the next generation solar cell. Although, the power-conversion efficiency of the PEDOT:PSS–SiNW hybrid solar cell has already been reported above 13% by many researchers, it is still at a primitive stage and requires comprehensive research and developments. When SiNWs interact with conjugate polymer PEDOT:PSS, the various aspects of SiNW array are required to optimize for high efficiency hybrid solar cell. Therefore, the designing of silicon nanowire (SiNW) array is a crucial aspect for an efficient PEDOT:PSS–SiNW hybrid solar cell, where PEDOT:PSS plays a role as a conductor with an transparent optical window just-like as metal-semiconductor Schottky solar cell. This short review mainly focuses on the current research trends for the general, electrical, optical and photovoltaic design issues associated with SiNW array for PEDOT:PSS–SiNW hybrid solar cells. The foremost features including the morphology, surface traps, doping of SiNW, which limit the efficiency of the PEDOT:PSS–SiNW hybrid solar cell, will be addressed and reviewed. Finally, the SiNW design issues for boosting up the fill-factor, short-circuit current and open-circuit voltage will be highlighted and discussed

    Optimization of Hole and Electron Transport Layer for Highly Efficient Lead-Free Cs2TiBr6-Based Perovskite Solar Cell

    No full text
    The methylammonium lead halide solar cell has attracted a great deal of attention due to its lightweight, low cost, and simple fabrication and processing. Despite these advantages, these cells are still far from commercialization because of their lead-based toxicity. Among lead-free perovskites, cesium-titanium (IV) bromide (Cs2TiBr6) is considered one of the best alternatives, but it faces a lack of higher PCE (power conversion efficiency) due to the unavailability of the matched hole and electron transport layers. Therefore, in this study, the ideal hole and electron transport layer parameters for the Cs2TiBr6-based solar cell were determined and discussed based on a simulation through SCAPS-1D software. It was observed that the maximum PCE of 20.4% could be achieved by using the proper hole and electron transport layers with optimized parameters such as energy bandgap, electron affinity, doping density, and thickness. Unfortunately, no hole and electron transport material with the required electronic structure was found. Then, polymer NPB and CeOx were selected as hole and electron transport layers, respectively, based on their closed electronic structure compared to the simulation results, and, hence, the maximum PCE was found as ~17.94% for the proposed CeOx/Cs2TiBr6/NPB solar cell

    Design of Dopant and Lead-Free Novel Perovskite Solar Cell for 16.85% Efficiency

    No full text
    Halide based perovskite offers numerous advantages such as high-efficiency, low-cost, and simple fabrication for flexible solar cells. However, long-term stability as well as environmentally green lead-free applications are the real challenges for their commercialization. Generally, the best reported perovskite solar cells are composed of toxic lead (Pb) and unstable polymer as the absorber and electron/hole-transport layer, respectively. Therefore, in this study, we proposed and simulated the photovoltaic responses of lead-free absorber such as cesium titanium (IV) bromide, Cs2TiBr6 with dopant free electron phenyl-C61-butyric acid methyl ester (PCBM), and dopant free hole transport layer N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) for the Ag/BCP/PCBM/Cs2TiBr6/NPB/ITO based perovskite solar cell. After comprehensive optimization of each layer through vigorous simulations with the help of software SCAPS 1D, it is observed that the proposed solar cell can yield maximum power-conversion efficiency up to 16.85%. This efficiency is slightly better than the previously reported power-conversion efficiency of a similar type of perovskite solar cell. We believe that the outcome of this study will not only improve our knowledge, but also triggers further investigation for the dopant and lead-free perovskite solar cell

    Towards Highly Efficient Cesium Titanium Halide Based Lead-Free Double Perovskites Solar Cell by Optimizing the Interface Layers

    No full text
    Lead halide perovskites are the most promising compared to the other recently discovered photovoltaic materials, but despite their enormous potential, these materials are facing some serious concerns regarding lead-based toxicity. Among many lead-free perovskites, the vacancy-ordered double perovskite cesium titanium halide family (Cs2TiX6, X = Cl, Br, I) is very popular and heavily investigated and reported on. The main objective of this study is to design and compare an efficient cesium titanium halide-based solar cell that can be used as an alternative to lead-based perovskite solar cells. For efficient photovoltaic requirements, the hole-transport layer and electron-transport layer materials such as PEDOT:PSS and Nb2O5 are selected, as these are the commonly reported materials and electronically compatible with the cesium titanium halide family. For the active layer, cesium titanium halide family members such as Cs2TiCl6, Cs2TiBr6, and Cs2TiI6 are reported here for the devices ITO/Nb2O5/Cs2TiI6/PEDOT:PSS/Au, ITO/Nb2O5/Cs2TiBr6/PEDOT:PSS/Au, and ITO/Nb2O5/Cs2TiCl6/PEDOT:PSS/Au, respectively. To determine the most efficient photovoltaic response, all the layers (PEDOT:PSS, Nb2O5, and active perovskite layer) of each device are optimized concerning thickness as well as doping density, and then each optimized device was systematically investigated for its photovoltaic responses through simulation and modeling. It is observed that the device ITO/Nb2O5/Cs2TiI6/PEDOT:PS/Au shows the most efficient photovoltaic response with little above 18.5% for maximum power-conversion efficiency

    Lead-Free FACsSnI<sub>3</sub> Based Perovskite Solar Cell: Designing Hole and Electron Transport Layer

    No full text
    In recent years, lead-based perovskites solar cells have demonstrated excellent power-conversion efficiency. Despite their remarkable progress, the commercialization of lead-based perovskites is hampered by lead toxicity concerns. The recently discovered non-toxic FACsSnI3 perovskite has the potential to replace lead-based perovskites in solar cell applications. Since the perovskite material FACsSnI3 (FA0.85Cs0.15SnI3) is relatively new, there is a lack of information, particularly regarding the design features required for electron and hole-transport layers for efficient photovoltaic responses. The important variables, such as electron affinity, energy band gap, film thickness, and doping density of both electron and hole-transport layers, were simulated and modeled separately and iteratively in this study to achieve the most efficient photovoltaic response. Finally, the absorber layer thickness of FACsSnI3 perovskite is tuned to achieve a maximum power-conversion efficiency of slightly more than 24%. We hope that the findings of this study will serve as a strong guideline for future research and the design of lead-free perovskite solar cells for efficient photovoltaic responses

    Electron Transport Layer Optimization for Efficient PTB7:PC70BM Bulk-Heterojunction Solar Cells

    No full text
    Bulk-heterojunction (BHJ) polymer solar cells have received a great deal of attention mainly due to the possibility of higher power conversion efficiency for photovoltaic applications. Therefore, in this study, relatively novel polymer BHJ solar cells are proposed (ITO/ETL/PTB7:PC70BM/PEDOT:PSS/Au) with various electron transport layers (ETL) such as zinc oxysulfide (Zn(O,S)), zinc selenide (ZnSe), and poly[(9,9-bis(3&prime;-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] dibromide (PFN-Br). Here, each ETL material is selected based on the energy bandgap compatibility with ITO as well as the PTB7:PC70BM active layer and is based on other physical properties, which are generally required for efficient photovoltaic responses. Each proposed device is comprehensively optimized and then photovoltaic responses are simulated and compared using the software SCAPS-1D. It was observed that the ITO/Zn(O,S)/PTB7:PC70BM/PEDOT:PSS/Au device offered the highest power-conversion efficiency of up to 17.15% with an open-circuit voltage of 0.85 volts, a short-circuit current of 28.23 mA/cm2, and a fill factor of 70.69%

    Leiomyosarcoma of the Tracheostomy Site in a Patient with History of Laryngeal Squamous Cell Carcinoma

    No full text
    Leiomyosarcoma (LMS) of the trachea is an extremely rare malignancy with only a few reported cases in English literature. As such the diagnosis can be frequently missed or delayed. We present a case of a 69-year-old male who underwent tracheostomy for airway obstruction secondary to glottic squamous cell carcinoma and treated definitely with radiation therapy. Subsequently, the patient developed LMS of the tracheostomy site. The case further details multiple risk factors that could contribute to development of LMS including radiation exposure, prior malignancy, and chronic inflammation. These risk factors have been well established for LMS in other sites but less so in the head and neck region, which is the subject of our discussion. We also review the current guidelines for head and neck as well as limb sarcomas and discussed role of surgery or radiation and their accompanying challenges in management of this rare malignancy

    TiO

    No full text
    Over the years, several forms of energy resources have been used for a variety of purposes; however, the over use of energy supplies has resulted in a variety of problems. Renewable energy sources are an excellent approach for addressing these challenges. In recent years, it has become possible to modify photoelectrochemical cells with titanium dioxide, cadmium sulfide, and graphitic nitride to create clean hydrogen. It has been discovered that the doping method enhances the photocatalytic activity of the catalyst. Metal-oxide nanoparticles are common dopants; one example of this is iron-doped TiO2, which exhibits remarkable quantum efficiency due to the presence of iron. Nanomaterials with excellent crystallinity, three-dimensional structure, and tiny size are needed for obtaining high photocatalytic efficiency. The focus of the current research is on clean fuel production (hydrogen synthesis) using a doped titanium dioxide photocatalyst. In addition to clean fuel generation, attention is being paid to the development of titanium dioxide doping technologies and the doping of titanium dioxide. Experimental manufacturing approaches have been investigated to achieve this goal. Both theoretical (computational) and experimental methodologies have been discussed that aid in reducing band gap of pure Anatase TiO2 and may help in achieving better photocatalytic water splitting (PWS) for hydrogen production
    corecore