12 research outputs found

    Modification of Polydiallyldimethylammonium Chloride with Sodium Polystyrenesulfonate Dramatically Changes the Resistance of Polymer-Based Coatings towards Wash-Off from Both Hydrophilic and Hydrophobic Surfaces

    No full text
    Polymer coatings based on polycations represent a perspective class of protective antimicrobial coatings. Polydiallyldimethylammonium chloride (PDADMAC) and its water-soluble complexes with sodium polystyrenesulfonate (PSS) were studied by means of dynamic light-scattering, laser microelectrophoresis and turbidimetry. It was shown that addition of six mol.% of polyanion to polycation results in formation of interpolyelectrolyte complex (IPEC) that was stable towards phase separation in water-salt media with a concentration of salts (NaCl, CaCl2, Na2SO4, MgSO4) up to 0.5 M. Most of the polyelectrolyte coatings are made by layer-by-layer deposition. The utilization of water-soluble IPEC for the direct deposition on the surface was studied. The coatings from the PDADMAC and the PSS/PDADMAC complex were formed on the surfaces of hydrophilic glass and hydrophobic polyvinylchloride. It was found that formation IPEC allows one to increase the stability of the coating towards wash-off with water in comparison to individual PDADMAC coating on both types of substrates. The visualization of the coatings was performed by atomic force microscopy and scanning electron microscopy

    Double Stimuli-Responsive di- and Triblock Copolymers of Poly(N-isopropylacrylamide) and Poly(1-vinylimidazole): Synthesis and Self-Assembly

    No full text
    For the first time, double stimuli-responsive properties of poly(N-isopropylacrylamide) (PNIPA) and poly(1-vinylimidazole) (PVIM) block copolymers in aqueous solutions were studied. The synthesis of PNIPA60-b-PVIM90 and PNIPA28-b-PVIM62-b-PNIPA29 was performed using reversible addition–fragmentation chain transfer (RAFT) polymerization. The polymers were characterized by size exclusion chromatography and 1H NMR spectroscopy. The conformational behavior of the polymers was studied using dynamic light scattering (DLS) and fluorescence spectroscopy (FS). It was found that PNIPA and block copolymers conformation and ability for self-assembly in aqueous medium below and above cloud point temperature depend on the locus of hydrophobic groups derived from the RAFT agent within the chain. Additionally, the length of PVIM block, its locus in the chain and charge perform an important role in the stabilization of macromolecular micelles and aggregates below and above cloud point temperature. At 25 °C the average hydrodynamic radius (Rh) of the block copolymer particles at pH 3 is lower than at pH 9 implying the self-assembling of macromolecules in the latter case. Cloud points of PNIPA60-b-PVIM90 are ~43 °C and ~37 °C at a pH of 3 and 9 and of PNIPA28-b-PVIM62-b-PNIPA29 they are ~35 °C and 31 °C at a pH of 3 and 9. Around cloud point independently of pH, the Rh value for triblock copolymer rises sharply, achieves the maximum value, then falls and reaches the constant value, while for diblock copolymer, it steadily grows after reaching cloud point. The information about polarity of microenvironment around polymer obtained by FS accords with DLS data

    Ultrasonic Film Rehydration Synthesis of Mixed Polylactide Micelles for Enzyme-Resistant Drug Delivery Nanovehicles

    No full text
    A facile technique for the preparation of mixed polylactide micelles from amorphous poly-D,L-lactide-block-polyethyleneglycol and crystalline amino-terminated poly-L-lactide is described. In comparison to the classical routine solvent substitution method, the ultrasonication assisted formation of polymer micelles allows shortening of the preparation time from several days to 15–20 min. The structure and morphology of mixed micelles were analyzed with the assistance of electron microscopy, dynamic and static light scattering and differential scanning calorimetery. The resulting polymer micelles have a hydrodynamic radius of about 150 nm and a narrow size distribution. The average molecular weight of micelles was found to be 2.1 × 107 and the aggregation number was calculated to be 6000. The obtained biocompatible particles were shown to possess low cytotoxicity, high colloid stability and high stability towards enzymatic hydrolysis. The possible application of mixed polylactide micelles as drug delivery vehicles was studied for the antitumor hydrophobic drug paclitaxel. The lethal concentration (LC50) of paclitaxel encapsulated in polylactide micelles was found to be 42 ± 4 µg/mL—a value equal to the LC50 of paclitaxel in the commercial drug Paclitaxel-Teva

    Synthesis of Magneto-Controllable Polymer Nanocarrier Based on Poly(N-isopropylacrylamide-co-acrylic Acid) for Doxorubicin Immobilization

    No full text
    In this work, the preparation procedure and properties of anionic magnetic microgels loaded with antitumor drug doxorubicin are described. The functional microgels were produced via the in situ formation of iron nanoparticles in an aqueous dispersion of polymer microgels based on poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-PAA). The composition and morphology of the resulting composite microgels were studied by means of X-ray diffraction, Mössbauer spectroscopy, IR spectroscopy, scanning electron microscopy, atomic-force microscopy, laser microelectrophoresis, and static and dynamic light scattering. The forming nanoparticles were found to be β-FeO(OH). In physiological pH and ionic strength, the obtained composite microgels were shown to possess high colloid stability. The average size of the composites was 200 nm, while the zeta-potential was −27.5 mV. An optical tweezers study has demonstrated the possibility of manipulation with microgel using external magnetic fields. Loading of the composite microgel with doxorubicin did not lead to any change in particle size and colloidal stability. Magnetic-driven interaction of the drug-loaded microgel with model cell membranes was demonstrated by fluorescence microscopy. The described magnetic microgels demonstrate the potential for the controlled delivery of biologically active substances

    Radiation-induced preparation of metal nanostructures in coatings of interpolyelectrolyte complexes

    No full text
    Copper, silver and gold nanoparticles were obtained by reduction of metal ions under X-ray irradiation of “layer-by-layer” (LbL) coatings in a water-alcohol medium. The precursors for metal polymer composites (metallopolymer complexes) were prepared by sorption of metal ions in polyethyleneimine - poly (styrenesulfonic acid) and polyethyleneimine - poly (acrylic acid) coatings deposited on cotton fibers. EPR spectroscopy was use to characterize the complexation of metal ions in coatings with different chemical structure and variable number of polyanion-polycation layers. The effect of coating structure and thickness on the size and stability of nanoparticles was studied using TEM and microdiffraction measurements. Antibacterial activity was found for composites containing silver nanoparticles.The reported study was funded by RFBR according to the research project № 18-33-01155

    Preparation of Biocidal Nanocomposites in X-ray Irradiated Interpolyelectolyte Complexes of Polyacrylic Acid and Polyethylenimine with Ag-Ions

    No full text
    Due to the presence of cationic units interpolyelectrolyte complexes (IPECs) can be used as a universal basis for preparation of biocidal coatings on different surfaces. Metallopolymer nanocomposites were successfully synthesized in irradiated solutions of polyacrylic acid (PAA) and polyethylenimine (PEI), and dispersions of non-stoichiometric IPECs of PAA–PEI containing silver ions. The data from turbidimetric titration and dynamic light scattering showed that pH 6 is the optimal value for obtaining IPECs. Metal polymer complexes based on IPEC with a PAA/PEI ratio equal to 3/1 and 1/3 were selected for synthesis of nanocomposites due to their aggregative stability. Studies using methods of UV–VIS spectroscopy and TEM have demonstrated that the size and spatial organization of silver nanoparticles depend on the composition of polymer systems. The average sizes of nanoparticles are 5 nm and 20 nm for complexes with a molar ratio of PAA/PEI units equal to 3/1 and 1/3, respectively. The synthesized nanocomposites were applied to the glass surface and exhibited high antibacterial activity against both gram-positive (Staphylococcus aureus) and gram-negative bacteria (Salmonella). It is shown that IPEC-Ag coatings demonstrate significantly more pronounced biocidal activity not only in comparison with macromolecular complexes of PAA–PEI, but also coatings of PEI and PEI based nanocomposites
    corecore