23,242 research outputs found
Effects of alarms on control of robot teams
Annunciator driven supervisory control (ADSC) is a widely used technique for directing human attention to control systems otherwise beyond their capabilities. ADSC requires associating abnormal parameter values with alarms in such a way that operator attention can be directed toward the involved subsystems or conditions. This is hard to achieve in multirobot control because it is difficult to distinguish abnormal conditions for states of a robot team. For largely independent tasks such as foraging, however, self-reflection can serve as a basis for alerting the operator to abnormalities of individual robots. While the search for targets remains unalarmed the resulting system approximates ADSC. The described experiment compares a control condition in which operators perform a multirobot urban search and rescue (USAR) task without alarms with ADSC (freely annunciated) and with a decision aid that limits operator workload by showing only the top alarm. No differences were found in area searched or victims found, however, operators in the freely annunciated condition were faster in detecting both the annunciated failures and victims entering their cameras' fields of view. Copyright 2011 by Human Factors and Ergonomics Society, Inc. All rights reserved
Asynchronous control with ATR for large robot teams
In this paper, we discuss and investigate the advantages of an asynchronous display, called "image queue", tested for an urban search and rescue foraging task. The image queue approach mines video data to present the operator with a relevant and comprehensive view of the environment by selecting a small number of images that together cover large portions of the area searched. This asynchronous approach allows operators to search through a large amount of data gathered by autonomous robot teams, and allows comprehensive and scalable displays to obtain a network-centric perspective for unmanned ground vehicles (UGVs). In the reported experiment automatic target recognition (ATR) was used to augment utilities based on visual coverage in selecting imagery for presentation to the operator. In the cued condition a box was drawn in the region in which a possible target was detected. In the no-cue condition no box was drawn although the target detection probability continued to play a role in the selection of imagery. We found that operators using the image queue displays missed fewer victims and relied on teleoperation less often than those using streaming video. Image queue users in the no-cue condition did better in avoiding false alarms and reported lower workload than those in the cued condition. Copyright 2011 by Human Factors and Ergonomics Society, Inc. All rights reserved
Recommended from our members
Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment
Regional aerosol model calculations were made using the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) and WRF-chem models to study spatial and temporal variations of aerosols around Beijing, China, in the summer of 2006, when the Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing) intensive campaign was conducted. Model calculations captured temporal variations of primary (such as elemental carbon. (EC)) and secondary (such as sulfate) aerosols observed in and around Beijing. The spatial distributions of aerosol optical depth observed by the MODTS satellite sensors were also reproduced over northeast China. Model calculations showed distinct differences in spatial distributions between primary and secondary aerosols in association with synoptic-scale meteorology. Secondary aerosols increased in air around Beijing on a scale of about 1000 Ă— 1000 km2 under an anticyclonic pressure system. This air mass was transported northward from the high anthropogenic emission area extending south of Beijing with continuous photochemical production. Subsequent cold front passage brought clean air from the north, and polluted air around Beijing was swept to the south of Beijing. This cycle was repeated about once a week and was found to be responsible for observed enhancements/reductions of aerosols at the intensive measurement sites. In contrast to secondary aerosols, the spatial distributions of primary aerosols (EC) reflected those of emissions, resulting in only slight variability despite the changes in synopticscale meteorology. In accordance with these results, source apportionment simulations revealed that primary aerosols around Beijing were controlled by emissions within 100 km around Beijing within the preceding 24 h, while emissions as far as 500 km and within the preceding 3 days were found to affect secondary aerosols. Copyright 2009 by the American Geophysical Union
Wigner-Seitz cells in neutron star crust with finite range interactions
The structure of Wigner-Seitz cells in the inner crust of neutron stars is
investigated using a microcospic Hartree-Fock-BCS approach with finite range
D1S and M3Y-P4 interactions. Large effects on the densities are found compared
to previous predictions using Skyrme interactions. Pairing effects are found to
be small, and they are attenuated by the use of finite range interactions in
the mean field.Comment: 11 pages, 5 figure
Lower cerebrospinal fluid/plasma fibroblast growth factor 21 (FGF21) ratios and placental FGF21 production in gestational diabetes
Objectives: Circulating Fibroblast Growth Factor 21 (FGF21) levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM). In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF) and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM) and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants.
Design: CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26–47 years, BMI: 24.3–36.3 kg/m2) and 12 controls (age: 22–40 years, BMI: 30.1–37.0 kg/m2)]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA.
Results: Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2–352.7) vs. 115.5 (60.5–188.7) pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3–0.6) vs. 0.8 (0.5–1.6); P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05).
Conclusions: The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points
Recommended from our members
Weight Loss and Illness Severity in Adolescents With Atypical Anorexia Nervosa.
BACKGROUND:Lower weight has historically been equated with more severe illness in anorexia nervosa (AN). Reliance on admission weight to guide clinical concern is challenged by the rise in patients with atypical anorexia nervosa (AAN) requiring hospitalization at normal weight. METHODS:We examined weight history and illness severity in 12- to 24-year-olds with AN (n = 66) and AAN (n = 50) in a randomized clinical trial, the Study of Refeeding to Optimize Inpatient Gains (www.clinicaltrials.gov; NCT02488109). Amount of weight loss was the difference between the highest historical percentage median BMI and admission; rate was the amount divided by duration (months). Unpaired t tests compared AAN and AN; multiple variable regressions examined associations between weight history variables and markers of illness severity at admission. Stepwise regression examined the explanatory value of weight and menstrual history on selected markers. RESULTS:Participants were 16.5 ± 2.6 years old, and 91% were of female sex. Groups did not differ by weight history or admission heart rate (HR). Eating Disorder Examination Questionnaire global scores were higher in AAN (mean 3.80 [SD 1.66] vs mean 3.00 [SD 1.66]; P = .02). Independent of admission weight, lower HR (β = -0.492 [confidence interval (CI) -0.883 to -0.100]; P = .01) was associated with faster loss; lower serum phosphorus was associated with a greater amount (β = -0.005 [CI -0.010 to 0.000]; P = .04) and longer duration (β = -0.011 [CI -0.017 to 0.005]; P = .001). Weight and menstrual history explained 28% of the variance in HR and 36% of the variance in serum phosphorus. CONCLUSIONS:Weight history was independently associated with markers of malnutrition in inpatients with restrictive eating disorders across a range of body weights and should be considered when assessing illness severity on hospital admission
Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles
Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures
Substrate-induced band gap opening in epitaxial graphene
Graphene has shown great application potentials as the host material for next
generation electronic devices. However, despite its intriguing properties, one
of the biggest hurdles for graphene to be useful as an electronic material is
its lacking of an energy gap in the electronic spectra. This, for example,
prevents the use of graphene in making transistors. Although several proposals
have been made to open a gap in graphene's electronic spectra, they all require
complex engineering of the graphene layer. Here we show that when graphene is
epitaxially grown on the SiC substrate, a gap of ~ 0.26 is produced. This gap
decreases as the sample thickness increases and eventually approaches zero when
the number of layers exceeds four. We propose that the origin of this gap is
the breaking of sublattice symmetry owing to the graphene-substrate
interaction. We believe our results highlight a promising direction for band
gap engineering of graphene.Comment: 10 pages, 4 figures; updated reference
High-energy scale revival and giant kink in the dispersion of a cuprate superconductor
In the present photoemission study of a cuprate superconductor
Bi1.74Pb0.38Sr1.88CuO6+delta, we discovered a large scale dispersion of the
lowest band, which unexpectedly follows the band structure calculation very
well. The incoherent nature of the spectra suggests that the hopping-dominated
dispersion occurs possibly with the assistance of local spin correlations. A
giant kink in the dispersion is observed, and the complete self-energy
containing all interaction information is extracted for a doped cuprate in the
low energy region. These results recovered significant missing pieces in our
current understanding of the electronic structure of cuprates.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. on May 21, 200
Journeying from “I” to “we”: assembling hybrid caring collectives of geography doctoral scholars
This is an Accepted Manuscript of an article published by Taylor & Francis in "Journal of Geography in Higher Education" on 15 June 2017, available at: https://www.tandfonline.com/doi/full/10.1080/03098265.2017.133529
- …