2 research outputs found
Quantum circuits with many photons on a programmable nanophotonic chip
Growing interest in quantum computing for practical applications has led to a
surge in the availability of programmable machines for executing quantum
algorithms. Present day photonic quantum computers have been limited either to
non-deterministic operation, low photon numbers and rates, or fixed random gate
sequences. Here we introduce a full-stack hardware-software system for
executing many-photon quantum circuits using integrated nanophotonics: a
programmable chip, operating at room temperature and interfaced with a fully
automated control system. It enables remote users to execute quantum algorithms
requiring up to eight modes of strongly squeezed vacuum initialized as two-mode
squeezed states in single temporal modes, a fully general and programmable
four-mode interferometer, and genuine photon number-resolving readout on all
outputs. Multi-photon detection events with photon numbers and rates exceeding
any previous quantum optical demonstration on a programmable device are made
possible by strong squeezing and high sampling rates. We verify the
non-classicality of the device output, and use the platform to carry out
proof-of-principle demonstrations of three quantum algorithms: Gaussian boson
sampling, molecular vibronic spectra, and graph similarity