146 research outputs found

    Vulnerable periods for cognitive development in individuals at high genomic risk of schizophrenia [Conference Abstract]

    Get PDF
    22q11.2 Deletion Syndrome (22q11.2DS) is caused by the deletion of approximately 60 genes on chromosome 22 and represents one of the strongest known genetic risk factors for schizophrenia. Approximately 1 in 4 adults with 22q11.2DS are diagnosed with schizophrenia spectrum disorders, presenting with psychotic symptomatology analogous to that exhibited in idiopathic schizophrenia. Cognitive deficits are a core feature of schizophrenia. 22q11.2DS presents a valuable model for understanding vulnerable periods of cognitive development which may be associated with psychosis development. Most previous studies report greater deficits in older individuals with 22q11.2DS than younger individuals but these studies have often focused solely on IQ, neglecting other neurocognitive domains associated with schizophrenia. Additionally, many studies of 22q11.2DS have not included adults, missing a crucial group at increased risk for schizophrenia. The first aim was therefore to examine whether there are increasing deficits in cognitive functioning on a wide range of domains in 22q11.2DS across developmental stages (children, adolescents and adults) compared to typically developing (TD) controls. The second aim was to take into account the presence of a psychotic disorder, and whether this explained variance in functioning. Methods We conducted the largest study to date of neurocognitive functioning beyond IQ in 22q11.2DS. This work was the result of international collaboration across 3 sites. The same battery of tasks measuring processing speed, attention and spatial working memory were completed by 219 participants with 22q11.2DS and 107 TD controls. Wechsler IQ tests were completed, yielding Full Scale (FSIQ), Verbal (VIQ) and Performance IQ scores (PIQ). An age-standardised difference score was produced for each participant taking into account TD control performance. The average performance of children (6–10 years), adolescents (10–18 years) and adults (18–56 years) was compared using an ANOVA approach. No children or adolescents reached diagnostic criteria for a psychotic disorder, but 13% of adults with 22q11.2DS were either diagnosed with a DSM-IV psychotic disorder. The cognitive performance of adults with or without a psychotic disorder was compared with independent t-tests with correction for unequal variance. Results Children and adults with 22q11.2DS displayed a greater deficit in working memory than adolescents (p=0.017 and p<0.001 respectively). Adults displayed greater deficits in FSIQ and PIQ than adolescents (p=0.018 and p=0.001 respectively). Adults diagnosed with a psychotic disorder displayed a greater deficit in VIQ than those without a psychotic disorder (p=0.040). Discussion Magnitude of cognitive deficit in individuals with 22q11.2DS varied by cognitive domain and developmental stage. There were specific deficits in working memory, PIQ and FSIQ in adults with 22q11.2DS compared to children and adolescents. The lack of differences between children and adolescents contradicts previous research which proposes that older children exhibit greater cognitive deficits, and suggests that there may be a longer developmental window to intervene and maintain cognitive functioning in a group at high genomic risk of schizophrenia. Adults with 22q11.2DS and psychotic disorder had a greater deficit in VIQ, which supports previous research. This international sample provides unique insights into cognitive functioning in 22q11.2DS across developmental stages

    22q11.2 deletion syndrome

    Get PDF
    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population

    Cognitive deficits in childhood, adolescence and adulthood in 22q11.2 deletion syndrome and association with psychopathology

    Get PDF
    22q11.2 Deletion Syndrome (22q11.2DS) is associated with high risk of psychiatric disorders and cognitive impairment. It remains unclear to what extent key cognitive skills are associated with psychopathology, and whether cognition is stable over time in 22q11.2DS. 236 children, adolescents and adults with 22q11.2DS and 106 typically developing controls were recruited from three sites across Europe. Measures of IQ, processing speed, sustained attention, spatial working memory and psychiatric assessments were completed. Cognitive performance in individuals was calculated relative to controls in different age groups (children (6–9 years), adolescents (10–17 years), adults (18+ years)). Individuals with 22q11.2DS exhibited cognitive impairment and higher rates of psychiatric disorders compared to typically developing controls. Presence of Autism Spectrum Disorder symptoms was associated with greater deficits in processing speed, sustained attention and working memory in adolescents but not children. Attention deficit hyperactivity disorder in children and adolescents and psychotic disorder in adulthood was associated with sustained attention impairment. Processing speed and working memory were more impaired in children and adults with 22q11.2DS respectively, whereas the deficit in sustained attention was present from childhood and remained static over developmental stages. Psychopathology was associated with cognitive profile of individuals with 22q11.2DS in an age-specific and domain-specific manner. Furthermore, magnitude of cognitive impairment differed by developmental stage in 22q11.2DS and the pattern differed by domain

    Pan-European landscape of research into neurodevelopmental copy number variants: a survey by the MINDDS consortium

    Get PDF
    Background Several rare copy number variants have been identified to confer risk for neurodevelopmental disorders (NDD-CNVs), and increasingly NDD-CNVs are being identified in patients. There is a clinical need to understand the phenotypes of NDD-CNVs. However due to rarity of NDD-CNVs in the population, within individual countries there is a limited number of NDD-CNV carriers who can participate in research. The pan-european MINDDS (Maximizing Impact of Research in Neurodevelopmental Disorders) consortium was established in part to address this issue. Methodology A survey was developed to scope out the current landscape of NDD-CNV research across member countries of the MINDDS consortium, and to identify clinical cohorts with potential for future research. Results 36 centres from across 16 countries completed the survey. We provide a list of centres who can be contacted for future collaborations. 3844 NDD-CNV carriers were identified across clinical and research centres spanning a range of medical specialties, including psychiatry, paediatrics, medical genetics. A broad range of phenotypic data was available; including medical history, developmental history, family history and anthropometric data. In 12/16 countries, over 75% of NDD-CNV carriers could be recontacted for future studies. Conclusion This survey has highlighted the potential within Europe for large multi-centre studies of NDD-CNV carriers, to improve knowledge of the complex relationship between NDD-CNV and clinical phenotype. The MINNDS consortium is in a position to facilitate collaboration, data-sharing and knowledge exchange on NDD-CNV phenotypes across Europe

    Typical features of Parkinson disease and diagnostic challenges with microdeletion 22q11.2

    Get PDF
    Objective: To delineate the natural history, diagnosis, and treatment response of Parkinson disease (PD) in individuals with 22q11.2 deletion syndrome (22q11.2DS), and to determine if these patients differ from those with idiopathic PD. Methods: In this international observational study, we characterized the clinical and neuroimaging features of 45 individuals with 22q11.2DS and PD (mean follow-up 7.5 ± 4.1 years). Results: 22q11.2DS PD had a typical male excess (32 male, 71.1%), presentation and progression of hallmark motor symptoms, reduced striatal dopamine transporter binding with molecular imaging, and initial positive response to levodopa (93.3%). Mean age at motor symptom onset was relatively young (39.5 ± 8.5 years); 71.4% of cases had early-onset PD (<45 years). Despite having a similar age at onset, the diagnosis of PD was delayed in patients with a history of antipsychotic treatment compared with antipsychotic-naive patients (median 5 vs 1 year, p = 0.001). Preexisting psychotic disorders (24.5%) and mood or anxiety disorders (31.1%) were common, as were early dystonia (19.4%) and a history of seizures (33.3%). Conclusions: Major clinical characteristics and response to standard treatments appear comparable in 22q11.2DS-associated PD to those in idiopathic PD, although the average age at onset is earlier. Importantly, treatment of preexisting psychotic illness may delay diagnosis of PD in 22q11.DS patients. An index of suspicion and vigilance for complex comorbidity may assist in identifying patients to prioritize for genetic testing

    Overt Cleft Palate Phenotype and TBX1 Genotype Correlations in Velo-cardio-facial/DiGeorge/22q11.2 Deletion Syndrome Patients

    Get PDF
    Velo-cardio-facial syndrome/DiGeorge syndrome, also known as 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome, with an estimated incidence of 1/2,000 – 1/4,000 live births. Approximately 9–11% of patients with this disorder have an overt cleft palate (CP), but the genetic factors responsible for CP in the 22q11DS subset are unknown. The TBX1 gene, a member of the T-box transcription factor gene family, lies within the 22q11.2 region that is hemizygous in patients with 22q11DS. Inactivation of one allele of Tbx1 in the mouse does not result in CP, but inactivation of both alleles does. Based on these data, we hypothesized that DNA variants in the remaining allele of TBX1 may confer risk to CP in patients with 22q11DS. To test the hypothesis, we evaluated TBX1 exon sequencing (n = 360) and genotyping data (n = 737) with respect to presence (n = 54) or absence (n = 683) of CP in patients with 22q11DS. Two upstream SNPs (rs4819835 and rs5748410) showed individual evidence for association but they were not significant after correction for multiple testing. Associations were not identified between DNA variants and haplotypes in 22q11DS patients with CP. Overall, this study indicates that common DNA variants in TBX1 may be nominally causative for CP in patients with 22q11DS. This raises the possibility that genes elsewhere on the remaining allele of 22q11.2 or in the genome could be relevant

    Genotype and Cardiovascular Phenotype Correlations With TBX1 in 1,022 Velo-Cardio-Facial/Digeorge/22q11.2 Deletion Syndrome Patients

    Get PDF
    Haploinsufficiency of TBX1, encoding a T-box transcription factor, is largely responsible for the physical malformations in velo-cardio-facial /DiGeorge/22q11.2 deletion syndrome (22q11DS) patients. Cardiovascular malformations in these patients are highly variable, raising the question as to whether DNA variations in the TBX1 locus on the remaining allele of 22q11.2 could be responsible. To test this, a large sample size is needed. The TBX1 gene was sequenced in 360 consecutive 22q11DS patients. Rare and common variations were identified. We did not detect enrichment in rare SNP (single nucleotide polymorphism) number in those with or without a congenital heart defect. One exception was that there was increased number of very rare SNPs between those with normal heart anatomy compared to those with right-sided aortic arch or persistent truncus arteriosus, suggesting potentially protective roles in the SNPs for these phenotype-enrichment groups. Nine common SNPs (minor allele frequency, MAF \u3e 0.05) were chosen and used to genotype the entire cohort of 1,022 22q11DS subjects. We did not find a correlation between common SNPs or haplotypes and cardiovascular phenotype. This work demonstrates that common DNA variations in TBX1 do not explain variable cardiovascular expression in 22q11DS patients, implicating existence of modifiers in other genes on 22q11.2 or elsewhere in the genome

    Nested inversion polymorphisms predispose chromosome 22q11.2 to meiotic rearrangements [RETRACTED]

    Get PDF
    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A–D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A–B 22q11.2 deletion carry inversions of LCR22B–D or LCR22C–D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders

    Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes

    Get PDF
    Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6–1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin
    • 

    corecore