337 research outputs found
Discerning the Form of the Dense Core Mass Function
We investigate the ability to discern between lognormal and powerlaw forms
for the observed mass function of dense cores in star forming regions. After
testing our fitting, goodness-of-fit, and model selection procedures on
simulated data, we apply our analysis to 14 datasets from the literature.
Whether the core mass function has a powerlaw tail or whether it follows a pure
lognormal form cannot be distinguished from current data. From our simulations
it is estimated that datasets from uniform surveys containing more than
approximately 500 cores with a completeness limit below the peak of the mass
distribution are needed to definitively discern between these two functional
forms. We also conclude that the width of the core mass function may be more
reliably estimated than the powerlaw index of the high mass tail and that the
width may also be a more useful parameter in comparing with the stellar initial
mass function to deduce the statistical evolution of dense cores into stars.Comment: 6 pages, 2 figures, accepted for publication in PAS
Magnetic inflation and stellar mass. IV. four low-mass kepler eclipsing binaries consistent with non-magnetic stellar evolutionary models
Low-mass eclipsing binaries (EBs) show systematically larger radii than model predictions for their mass, metallicity, and age. Prominent explanations for the inflation involve enhanced magnetic fields generated by rapid rotation of the star that inhibit convection and/or suppress flux from the star via starspots. However, derived
masses and radii for individual EB systems often disagree in the literature. In this paper, we continue to investigate low-mass EBs observed by NASAâs Kepler spacecraft, deriving stellar masses and radii using high-quality spacebased light curves and radial velocities from high-resolution infrared spectroscopy. We report masses and radii for three Kepler EBs, two of which agree with previously published masses and radii (KIC 11922782 and KIC 9821078). For the third EB (KIC 7605600), we report new masses and show the secondary component is likely fully convective (M2 = 0.17 ± 0.01Mâ and = - â + R2 0.199 0.002R 0.001 ). Combined with KIC 10935310 from Han et al., we find that the masses and radii for four low-mass Kepler EBs are consistent with modern stellar evolutionary
models for M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.Published versio
A Pre-Protostellar Core in L1551. II. State of Dynamical and Chemical Evolution
Both analytic and numerical radiative transfer models applied to high
spectral resolution CS and N2H+ data give insight into the evolutionary state
of L1551 MC. This recently discovered pre-protostellar core in L1551 appears to
be in the early stages of dynamical evolution. Line-of-sight infall velocities
of >0.1km/s are needed in the outer regions of L1551 MC to adequately fit the
data. This translates to an accretion rate of ~ 1e-6 Msun/yr, uncertain to
within a factor of 5 owing to unknown geometry. The observed dynamics are not
due to spherically symmetric gravitational collapse and are not consistent with
the standard model of low-mass star formation. The widespread, fairly uniform
CS line asymmetries are more consistent with planar infall. There is modest
evidence for chemical depletion in the radial profiles of CS and C18O
suggesting that L1551 MC is also chemically young. The models are not very
sensitive to chemical evolution. L1551 MC lies within a quiescent region of
L1551 and is evidence for continued star formation in this evolved cloud.Comment: 27 pages, 7 figures, ApJ accepte
The Radius Distribution of Planets Around Cool Stars
We calculate an empirical, non-parametric estimate of the shape of the
period-marginalized radius distribution of planets with periods less than 150
days using the small yet well-characterized sample of cool (K) dwarf stars in the Kepler catalog. In particular, we present and validate a
new procedure, based on weighted kernel density estimation, to reconstruct the
shape of the planet radius function down to radii smaller than the completeness
limit of the survey at the longest periods. Under the assumption that the
period distribution of planets does not change dramatically with planet radius,
we show that the occurrence of planets around these stars continues to increase
to below 1 , and that there is no strong evidence for a turnover in
the planet radius function. In fact, we demonstrate using many iterations of
simulated data that a spurious turnover may be inferred from data even when the
true distribution continues to rise toward smaller radii. Finally, the sharp
rise in the radius distribution below 3 implies that a large
number of planets await discovery around cool dwarfs as the sensitivities of
ground-based transit surveys increase.Comment: 13 pages, 10 figures, published in Ap
Magnetic inflation and stellar mass. III. revised parameters for the component stars of NSVS 07394765
We perform a new analysis of the M-dwarfâM-dwarf eclipsing binary system NSVS 07394765 in order to investigate the reported hyper-inflated radius of one of the component stars. Our analysis is based on archival photometry from the Wide Angle Search for Planets, new photometry from the 32 cm Command Module
Observatory telescope in Arizona and the 70 cm telescope at Thacher Observatory in California, and new high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrograph on the Discovery Channel Telescope. The masses and radii we measure for each component star disagree with previously reported measurements. We show that both stars are early M-type main-sequence stars without evidence for youth or hyper-inflation ( = - â M M + 1 0.661 0.036 0.008 , = - â M M + 2 0.608 0.028 0.003 , = - â + R1 0.599 0.019 R 0.032 , = - â + R2 0.625 0.027 R 0.012 ), and
we update the orbital period and eclipse ephemerides for the system. We suggest that the likely cause of the initial hyper-inflated result is the use of moderate-resolution spectroscopy for precise radial velocity measurements.Published versio
Nature Of Transition Circumstellar Disks. I. The Ophiuchus Molecular Cloud
We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d similar to 125 pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from <0.6 to 40 M(JUP) and accretion rates ranging from <10(-11) to 10(-7) M(circle dot) yr(-1), but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: six of them are binaries and the other two are triple systems. In four cases, the stellar companions are close enough to suspect they are responsible for the inferred inner holes. We find that nine of our 26 targets have low disk mass (<2.5 M(JUP)) and negligible accretion (<10(-11) M(circle dot) yr(-1)), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10(-3) and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.NASA 1224608, 1230782, 1230779, 1407FONDECYT 1061199Basal CATA PFB 06/09ALMA FUND 31070021ALMA-Conicyt FUND 31060010National Science Foundation AST0-808144Spitzer Space Telescope Legacy Science ProgramAstronom
A Pre-Protostellar Core in L1551
Large field surveys of NH3, C2S, 13CO and C18O in the L1551 dark cloud have
revealed a prolate, pre-protostellar molecular core (L1551-MC) in a relatively
quiescent region to the northwest of the well-known IRS 5 source. The kinetic
temperature is measured to be 9K, the total mass is ~2Msun, and the average
particle density is 10^4-10^5 cm^(-3). L1551-MC is 2.25' x 1.11' in projection
oriented at a position angle of 133deg. The turbulent motions are on the order
of the sound speed in the medium and contain 4% of the gravitational energy,
E_{grav}, of the core. The angular momentum vector is projected along the major
axis of L1551-MC corresponding to a rotational energy of 2.5E-3(sin
i)^(-2)|E_{grav}|. The thermal energy constitutes about a third of |E_{grav}|
and the virial mass is approximately equal to the total mass. L1551-MC is
gravitationally bound and in the absence of strong, ~160 microgauss, magnetic
fields will likely contract on a ~0.3 Myr time scale. The line profiles of many
molecular species suggest that the cold quiescent interior is surrounded by a
dynamic, perhaps infalling envelope which is embedded within the ambient
molecular gas of L1551.Comment: 27 pages, 7 figures, ApJ accepte
The Masses of Transition Circumstellar Disks: Observational Support for Photoevaporation Models
We report deep Sub-Millimeter Array observations of 26 pre-main-sequence
(PMS) stars with evolved inner disks. These observations measure the mass of
the outer disk (r ~20-100 AU) across every stage of the dissipation of the
inner disk (r < 10 AU) as determined by the IR spectral energy distributions
(SEDs). We find that only targets with high mid-IR excesses are detected and
have disk masses in the 1-5 M_Jup range, while most of our objects remain
undetected to sensitivity levels of M_DISK ~0.2-1.5 M_Jup. To put these results
in a more general context, we collected publicly available data to construct
the optical to millimeter wavelength SEDs of over 120 additional PMS stars. We
find that the near-IR and mid-IR emission remain optically thick in objects
whose disk masses span 2 orders of magnitude (~0.5-50 M_Jup). Taken together,
these results imply that, in general, inner disks start to dissipate only after
the outer disk has been significantly depleted of mass. This provides strong
support for photoevaporation being one of the dominant processes driving disk
evolution.Comment: Accepted for publication by ApJL, 4 pages and 3 figure
Blood pressure and cardiac autonomic adaptations to isometric exercise training: A randomized shamâcontrolled study
Isometric exercise training (IET) is increasingly cited for its role in reducing resting blood pressure (BP). Despite this, few studies have investigated a potential sham effect attributing to the success of IET, thus dictating the aim of the present study. Thirty physically inactive males (n = 15) and females (n = 15) were randomly assigned into three groups. The IET group completed a wall squat intervention at 95% peak heart rate (HR) using a prescribed knee joint angle. The sham group performed a parallel intervention, but at an intensity (<75% peak HR) previously identified to be inefficacious over a 4-week training period. No-intervention controls maintained their normal daily activities. Pre- and post-measures were taken for resting and continuous blood pressure and cardiac autonomic modulation. Resting clinic and continuous beat-to-beat systolic (â15.2 ± 9.2 and â7.3 ± 5.6 mmHg), diastolic (â4.6 ± 5 and â4.5 ± 5.1), and mean (â7 ± 4.2 and â7.5 ± 5.3) BP, respectively, all significantly decreased in the IET group compared to sham and no-intervention control. The IET group observed a significant decrease in low-frequency normalized units of heart rate variability concurrent with a significant increase in high-frequency normalized units of heart rate variability compared to both the sham and no-intervention control groups. The findings of the present study reject a nonspecific effect and further support the role of IET as an effective antihypertensive intervention.
Clinical Trials ID: NCT05025202
Kepler-445, Kepler-446 And The Occurrence Of Compact Multiples Orbiting Mid-M Dwarf Stars
We confirm and characterize the exoplanetary systems Kepler-445 and Kepler-446: two mid-M dwarf stars, each with multiple, small, short-period transiting planets. Kepler-445 is a metal-rich ([ Fe/H] = + 0.25 0.10) M4 dwarf with three transiting planets, and Kepler-446 is a metal-poor ([ Fe/H] = -0.30 0.10) M4 dwarf also with three transiting planets. Kepler-445c is similar toGJ 1214b: both in planetary radius and the properties of the host star. The Kepler-446 system is similar to the Kepler-42 system: both are metal-poor with large galactic space velocities and three short-period, likely rocky transiting planets that were initially assigned erroneously large planet-to-star radius ratios. We independently determined stellar parameters from spectroscopy and searched for and fitted the transit light curves for the planets, imposing a strict prior on stellar density in order to remove correlations between the fitted impact parameter and planet-to-star radius ratio for short-duration transits. Combining Kepler-445, Kepler-446, and Kepler-42, and isolating all mid-M dwarf stars observed by Kepler with the precision necessary to detect similar systems, we calculate that 21+ 7 -5 % of mid-M dwarf stars host compact multiples ( multiple planets with periods of less than 10 days) for a wide range of metallicities. We suggest that the inferred planet masses for these systems support highly efficient accretion of protoplanetary disk metals by mid-M dwarf protoplanets.NSF DGE1144152, AST-1005313NASA NAS5-26555NASA Office of Space Science NNX13AC07GAstronom
- âŠ