132 research outputs found

    The history and recent advances in research of polyprenol and its derivatives

    Get PDF
    The reduction pathway leading to the formation of dolichol was clarified in 2010 with the identification of SRD5A3, which is the polyprenol reductase. The finding inspired us to reanalyze the length of the major chain of polyprenol and dolichol from several plant leaves, including mangrove plants, as well as from animal and fish livers by 2D-TLC. Polyprenol- and dolichol derived metabolites such as polyprenylacetone and epoxydolichol were found together with rubber-like prenol. This review focuses on analyses of polyprenol and its derivatives, including recently found epoxypolyprenol and polyprenylacetone. Attention has also been paid to the chromatographic behavior of rubber-like prenol on TLC

    Effect of salt stress on prenol lipids in the leaves of Tilia ‘Euchlora’

    Get PDF
    Soil contamination caused by the NaCl used to de-ice slippery roads in winter is now recognized as one of the major causes of nutrient disorders and death in urban trees. It is believed that polyisoprenoids may have a specific role in the adaptation of plants to adverse conditions and habitats; it is further believed that in the cell, they may exhibit a protective effect in response to biotic and abiotic stress. The aim of this study was to evaluate the effect of salt stress on the content of prenol lipids in the leaves of Crimean linden (Tilia ‘Euchlora’). The Cl content in the slightly damaged (“healthy”) leaves averaged 0.96%, while that in the heavily damaged (“sick”) leaves averaged 2.02%. The leaves of control trees contained on average 0.57% Cl. The Na contents in the healthy and damaged leaves were 208 mg/kg and 1038 mg/kg, respectively, and the Na content in the control areas was 63 mg/kg. A mixture of polyprenols consisting of four compounds, prenol-9, prenol-10, prenol-11 and prenol-12, was identified in the leaves of Crimean linden. This mixture was dominated by prenol-10 (2.16–6.90 mg/g). The polyprenol content was highest in the leaves of “healthy” trees (approximately 13.31 mg/g), was lower in the case of “sick” trees (approximately 9.18 mg/g), and was the lowest in the control trees (mean 4.71 mg/g). No changes were observed in the composition of the mixture of polyprenols under these conditions. The results suggest that polyprenols may affect the accumulation of Cl in leaves. This phenomenon is evidenced by the high content of prenols in the leaves of trees considered “healthy” but growing under conditions of increased soil salinity and the lower content of prenols in the leaves of the “sick” and control trees. It is advisable to further investigate the role of prenol lipids in the leaves of trees subjected to salt stress. BACZEWSKA A., DMUCHOWSKI W., JÓŹWIAK A., GOZDOWSKI D., BRĄGOSZEWSKA P., DĄBROWSKI P., ŚWIEŻEWSKA E

    Quantitative and qualitative characteristics of cell wall components and prenyl lipids in the leaves of Tilia x euchlora trees growing under salt stress

    Get PDF
    The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four polyisoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids

    Quantification of dolichol in the human lens with different types of cataracts

    Get PDF
    PURPOSE: To quantify and characterize dolichol species in cataractous and clear human lenses. METHODS: Whole lenses were collected from cadaver eyeballs from the C.H. Nagri Eye Bank and Red Cross Society Eye Bank (Ahmedabad, India). Cataractous nuclei were collected after extracapsular cataract extraction (ECCE). Wet weight for all the lenses was taken and were stored at -50 degrees C until used. Dolichol was extracted using a standard protocol and then analyzed using High Performance Liquid Chromatography (HPLC) on a 4.6 mmx60 mm Hypersil-Octadecylsilane (ODS; 3 microm) reversed phase column using a Waters dual pump apparatus, a Waters gradient programmer, and an ultraviolet (UV) detector set at 210 nm. Dolichol 13 was used as an internal standard, and dolichol mixture from the liver was used as an external qualitative standard. RESULTS: The highest dolichol concentration was found in nuclear cataract (2.54+/-0.6 microg) followed by posterior subcapsular cataract (1.4+/-0.35 microg), and the lowest levels were observed in cortical cataract (0.37+/-0.06 microg). The level of dolichol concentration in cataractous lenses was statistically significantly higher than the levels in clear lenses (1.0+/-04.3 microg; p<0.01). CONCLUSIONS: The dolichol concentration was significantly higher in lenses with nuclear cataract. A significant difference in dolichol concentration was observed between the different types of cataract. It suggests that dolichol and other isoprenoids may be associated with cataractogenesis

    Atmospheric pressure photoionization mass spectrometry as a valuable method for the identification of polyisoprenoid alcohols

    Get PDF
    RATIONALE: The aim of this study was to determine whether Atmospheric Pressure Photoionization (APPI) was better suited for the mass spectrometric (MS) analysis of polyisoprenoid alcohols than the commonly used Electrospray Ionization (ESI) method. The APPI method should make possible the use of non-polar solvents without any of the additives required by ESI, together with improved detection limits. METHODS: The liquid chromatography (LC)/APPI-MS and LC/ESI-MS spectra of polyisoprenoid alcohol standards were acquired in both positive and negative ion mode, in methanol and hexane, using a triple quadrupole/linear ion trap tandem mass spectrometer equipped with both an ESI and an APPI ion source. RESULTS: In the positive ion mode peaks corresponding to [M +H � H2O]+ and [M +H]+ ions were observed in the APPI-MS spectra of polyprenols and dolichols, respectively. In the negative ion mode peaks corresponding to [M +O2]� • and [M+ Cl]� ions were observed for both classes of polyisoprenoid alcohols. The detection limit of polyisoprenoid alcohols was established at the level of 10 pg. CONCLUSIONS: APPI turned out to be a method of choice for the identification and quantitation of polyisoprenoid alcohols by MS using both polar and non-polar solvents. APPI also enabled greater differentiation of polyprenols and dolichols occurring together in natural samples and gave much better TIC chromatograms without the need for the post-column salt addition required by ESI

    New cationic polyprenyl derivative proposed as a lipofecting agent

    Get PDF
    Cationic linear poly-cis-isoprenoid prepared from natural plant polyprenol in a mixture with dioleyl phosphatidylethanolamine was found to be an effective lipofection agent for eukaryotic cells. The transfecting activity is related to the poly-cis structure of the polyprenyl chain

    Substrate Tolerance of Bacterial Glycosyltransferase MurG: Novel Fluorescence-based Assays

    Get PDF
    MurG (uridine diphosphate-N-acetylglucosamine/N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase) is an essential bacterial glycosyltransferase that catalyzes the N-acetylglucosamine (GlcNAc) transformation of lipid I to lipid II during peptidoglycan biosynthesis. Park’s nucleotide has been a convenient biochemical tool to study the function of MraY (phospho-MurNAc-(pentapeptide) translocase) and MurG; however, no fluorescent probe has been developed to differentiate individual processes in the biotransformation of Park’s nucleotide to lipid II via lipid I. Herein, we report a robust assay of MurG using either the membrane fraction of a M. smegmatis strain or a thermostable MraY and MurG of Hydrogenivirga sp. as enzyme sources, along with Park’s nucleotide or Park’s nucleotide-Nε-C6-dansylthiourea and uridine diphosphate (UDP)-GlcN-C6-FITC as acceptor and donor substrates. Identification of both the MraY and MurG products can be performed simultaneously by HPLC in dual UV mode. Conveniently, the generated lipid II fluorescent analogue can also be quantitated via UV–Vis spectrometry without the separation of the unreacted lipid I derivative. The microplate-based assay reported here is amenable to high-throughput MurG screening. A preliminary screening of a collection of small molecules has demonstrated the robustness of the assays and resulted in rediscovery of ristocetin A as a strong antimycobacterial MurG and MraY inhibitor

    Prenyl Ammonium Salts – New Carriers for Gene Delivery: A B16-F10 Mouse Melanoma Model

    Get PDF
    Purpose Prenyl ammonium iodides (Amino-Prenols, APs), semi-synthetic polyprenol derivatives were studied as prospective novel gene transfer agents. Methods AP-7, -8, -11 and -15 (aminoprenols composed of 7, 8, 11 or 15 isoprene units, respectively)were examined for their capacity to form complexes with pDNA, for cytotoxicity and ability to transfect genes to cells. Results All the carriers were able to complex DNA. The highest, comparable to commercial reagents, transfection efficiency was observed for AP-15. Simultaneously, AP-15 exhibited the lowest negative impact on cell viability and proliferation—considerably lower than that of commercial agents. AP-15/DOPE complexes were also efficient to introduce pDNA to cells, without much effect on cell viability. Transfection with AP-15/DOPE complexes influenced the expression of a very few among 44 tested genes involved in cellular lipid metabolism. Furthermore, complexes containing AP-15 and therapeutic plasmid, encoding the TIMP metallopeptidase inhibitor 2 (TIMP2), introduced the TIMP2 gene with high efficiency to B16-F10 melanoma cells but not to B16-F10 melanoma tumors in C57BL/6 mice, as confirmed by TIMP2 protein level determination. Conclusion Obtained results indicate that APs have a potential as non-viral vectors for cell transfection
    corecore