185 research outputs found
The Effect of Photoactivated TMP on \u3cem\u3eBurkholderia cepacia\u3c/em\u3e Biofilms
Burkholderia cepacia is an opportunistic pathogen that causes infections in immunocompromised individuals such as cystic fibrosis patients. B. cepacia infections are typically characterized by the formation of complex communities of cells known as biofilms. Because B. cepacia biofilms are difficult to eradicate using antibiotics, it is important to pursue alternative treatment methods. Photodynamic therapy (PDT) is a type of therapy that uses light, a photosensitizer, and oxygen to elicit cell death through the production of reactive oxygen species. PDT has been shown in previous studies to be successful in killing both Pseudomonas aeruginosa and Staphylococcus aureus. In this study, we examined the effect of a cationic porphyrin on B. cepacia biofilms by exposing static biofilms to 5,10,15,20-tetrakis(1-methyl-pyridino)-21H,23H-porphine, tetra-p-tosylate salt (TMP) followed by irradiation. Standard plate counts of cells recovered from attached biofilms revealed a 0.7-log10 reduction (80.2%) in cell viability in the presence of 225µM of TMP and light. In addition, there was a 2.74-log(10) reduction in cell viability when biofilms were treated with TMP and ciprofloxacin in comparison to a 1.96-log(10) reduction when biofilms were treated with ciprofloxacin alone. Because surface motility is involved in biofilm formation, we also examined the effects of TMP on swarming motility in B. cepacia and P. aeruginosa. In the presence of TMP in the dark, there was a substantial increase in swarming motility of both B. cepacia and P. aeruginosa. These results suggest that photoactivated TMP not only kills biofilm-associated cells, but may promote biofilm disruption through pre-dispersion behavior in the absence of light
Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices
We derive exact analytic expressions for the distributions of eigenvalues and
singular values for the product of an arbitrary number of independent
rectangular Gaussian random matrices in the limit of large matrix dimensions.
We show that they both have power-law behavior at zero and determine the
corresponding powers. We also propose a heuristic form of finite size
corrections to these expressions which very well approximates the distributions
for matrices of finite dimensions.Comment: 13 pages, 3 figure
Universal microscopic correlation functions for products of independent Ginibre matrices
We consider the product of n complex non-Hermitian, independent random
matrices, each of size NxN with independent identically distributed Gaussian
entries (Ginibre matrices). The joint probability distribution of the complex
eigenvalues of the product matrix is found to be given by a determinantal point
process as in the case of a single Ginibre matrix, but with a more complicated
weight given by a Meijer G-function depending on n. Using the method of
orthogonal polynomials we compute all eigenvalue density correlation functions
exactly for finite N and fixed n. They are given by the determinant of the
corresponding kernel which we construct explicitly. In the large-N limit at
fixed n we first determine the microscopic correlation functions in the bulk
and at the edge of the spectrum. After unfolding they are identical to that of
the Ginibre ensemble with n=1 and thus universal. In contrast the microscopic
correlations we find at the origin differ for each n>1 and generalise the known
Bessel-law in the complex plane for n=2 to a new hypergeometric kernel 0_F_n-1.Comment: 20 pages, v2 published version: typos corrected and references adde
MeCP2 mutations: progress towards understanding and treating Rett syndrome
Rett syndrome is a profound neurological disorder caused by mutations in the MECP2 gene, but preclinical research has indicated that it is potentially treatable. Progress towards this goal depends on the development of increasingly relevant model systems and on our improving knowledge of MeCP2 function in the brain
Diet and Energy-Sensing Inputs Affect TorC1-Mediated Axon Misrouting but Not TorC2-Directed Synapse Growth in a Drosophila Model of Tuberous Sclerosis
The Target of Rapamycin (TOR) growth regulatory system is influenced by a number of different inputs, including growth factor signaling, nutrient availability, and cellular energy levels. While the effects of TOR on cell and organismal growth have been well characterized, this pathway also has profound effects on neural development and behavior. Hyperactivation of the TOR pathway by mutations in the upstream TOR inhibitors TSC1 (tuberous sclerosis complex 1) or TSC2 promotes benign tumors and neurological and behavioral deficits, a syndrome known as tuberous sclerosis (TS). In Drosophila, neuron-specific overexpression of Rheb, the direct downstream target inhibited by Tsc1/Tsc2, produced significant synapse overgrowth, axon misrouting, and phototaxis deficits. To understand how misregulation of Tor signaling affects neural and behavioral development, we examined the influence of growth factor, nutrient, and energy sensing inputs on these neurodevelopmental phenotypes. Neural expression of Pi3K, a principal mediator of growth factor inputs to Tor, caused synapse overgrowth similar to Rheb, but did not disrupt axon guidance or phototaxis. Dietary restriction rescued Rheb-mediated behavioral and axon guidance deficits, as did overexpression of AMPK, a component of the cellular energy sensing pathway, but neither was able to rescue synapse overgrowth. While axon guidance and behavioral phenotypes were affected by altering the function of a Tor complex 1 (TorC1) component, Raptor, or a TORC1 downstream element (S6k), synapse overgrowth was only suppressed by reducing the function of Tor complex 2 (TorC2) components (Rictor, Sin1). These findings demonstrate that different inputs to Tor signaling have distinct activities in nervous system development, and that Tor provides an important connection between nutrient-energy sensing systems and patterning of the nervous system
Effects of rapamycin and curcumin on inflammation and oxidative stress in vitro and in vivo - in search of potential anti-epileptogenic strategies for temporal lobe epilepsy
Background: Previous studies in various rodent epilepsy models have suggested that mammalian target of rapamycin (mTOR) inhibition with rapamycin has anti-epileptogenic potential. Since treatment with rapamycin produces unwanted side effects, there is growing interest to study alternatives to rapamycin as anti-epileptogenic drugs. Therefore, we investigated curcumin, the main component of the natural spice turmeric. Curcumin is known to have anti-inflammatory and anti-oxidant effects and has been reported to inhibit the mTOR pathway. These properties make it a potential anti-epileptogenic compound and an alternative for rapamycin.Methods: To study the anti-epileptogenic potential of curcumin compared to rapamycin, we first studied the effects of both compounds on mTOR activation, inflammation, and oxidative stress in vitro, using cell cultures of human fetal astrocytes and the neuronal cell line SH-SY5Y. Next, we investigated the effects of rapamycin and intracerebrally applied curcumin on status epilepticus (SE)—induced inflammation and oxidative stress in hippocampal tissue, during early stages of epileptogenesis in the post-electrical SE rat model for temporal lobe epilepsy (TLE).Results: Rapamycin, but not curcumin, suppressed mTOR activation in cultured astrocytes. Instead, curcumin suppressed the mitogen-activated protein kinase (MAPK) pathway. Quantitative real-time PCR analysis revealed that curcumin, but not rapamycin, reduced the levels of inflammatory markers IL-6 and COX-2 in cultured astrocytes that were challenged with IL-1β. In SH-SY5Y cells, curcumin reduced reactive oxygen species (ROS) levels, suggesting anti-oxidant effects. In the post-SE rat model, however, treatment with rapamycin or curcumin did not suppress the expression of inflammatory and oxidative stress markers 1 week after SE.Conclusions: These results indicate anti-inflammatory and anti-oxidant properties of curcumin, but not rapamycin, in vitro. Intracerebrally applied curcumin modified the MAPK pathway in vivo at 1 week after SE but failed to produce anti-inflammatory or anti-oxidant effects. Future studies should be directed to increasing the bioavailability of curcumin (or related compounds) in the brain to assess its anti-epileptogenic potential in vivo
Long-Term Continuous Corticosterone Treatment Decreases VEGF Receptor-2 Expression in Frontal Cortex
Objective: Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under longterm continuous glucocorticoid exposure has not been elucidated. Material and Methods: We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1 signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of both control and schizophrenia subjects. Results: We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN, Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR) and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects. Conclusions: The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecula
The Effect of Selenium Supplementation in the Prevention of DNA Damage in White Blood Cells of Hemodialyzed Patients: A Pilot Study
Patients with chronic kidney disease (CKD) have an increased incidence of cancer. It is well known that long periods of hemodialysis (HD) treatment are linked to DNA damage due to oxidative stress. In this study, we examined the effect of selenium (Se) supplementation to CKD patients on HD on the prevention of oxidative DNA damage in white blood cells. Blood samples were drawn from 42 CKD patients on HD (at the beginning of the study and after 1 and 3 months) and from 30 healthy controls. Twenty-two patients were supplemented with 200 μg Se (as Se-rich yeast) per day and 20 with placebo (baker's yeast) for 3 months. Se concentration in plasma and DNA damage in white blood cells expressed as the tail moment, including single-strand breaks (SSB) and oxidative bases lesion in DNA, using formamidopyrimidine glycosylase (FPG), were measured. Se concentration in patients was significantly lower than in healthy subjects (P < 0.0001) and increased significantly after 3 months of Se supplementation (P < 0.0001). Tail moment (SSB) in patients before the study was three times higher than in healthy subjects (P < 0.01). After 3 months of Se supplementation, it decreased significantly (P < 0.01) and was about 16% lower than in healthy subjects. The oxidative bases lesion in DNA (tail moment, FPG) of HD patients at the beginning of the study was significantly higher (P < 0.01) compared with controls, and 3 months after Se supplementation it was 2.6 times lower than in controls (P < 0.01). No changes in tail moment was observed in the placebo group. In conclusion, our study shows that in CKD patients on HD, DNA damage in white blood cells is higher than in healthy controls, and Se supplementation prevents the damage of DNA
Mapping the Spatio-Temporal Pattern of the Mammalian Target of Rapamycin (mTOR) Activation in Temporal Lobe Epilepsy
Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE
- …