44 research outputs found

    Extent of Empowerment of Women Entrepreneurs on Entrepreneurial and Technological Empowerment

    Get PDF
    Empowerment of women entrepreneurs in the context of technology entails building up the abilities and skills of women to gain insight into the issues affecting them and also building up their capacity to voice their concerns. Technological empowerment of women entrepreneurs will open up avenues to further nrichment. By the use of technology women can broaden the scope of their activities. Hence the present paper focused on analyzing the entrepreneurial and technological empowerment of women entrepreneurs. Majority of the women entrepreneurs had medium level of entrepreneurial and low level of technological empowerment

    Striated Rootlet and Nonfilamentous Forms of Rootletin Maintain Ciliary Function

    Get PDF
    SummaryPrimary cilia are microtubule-based sensory organelles whose structures and functions must be actively maintained throughout animal lifespan to support signal transduction pathways essential for development and physiological processes such as vision and olfaction [1]. Remarkably, few cellular components aside from the intraflagellar transport (IFT) machinery are implicated in ciliary maintenance [2]. Rootletin, an evolutionarily conserved protein found as prominent striated rootlets or a nonfilamentous form, both of which are associated with cilium-anchoring basal bodies, represents a likely candidate given its well-known role in preventing ciliary photoreceptor degeneration in a mouse model [3, 4]. Whether rootletin is universally required for maintaining ciliary integrity, and if so, by what mechanism, remains unresolved. Here, we demonstrate that the gene disrupted in the previously isolated C. elegans chemosensory mutant che-10 encodes a rootletin ortholog that localizes proximally and distally to basal bodies of cilia harboring or lacking conspicuous rootlets. In vivo analyses reveal that CHE-10/rootletin maintains ciliary integrity partly by modulating the assembly, motility, and flux of IFT particles, which are critical for axoneme length control. Surprisingly, CHE-10/rootletin is also essential for stabilizing ciliary transition zones and basal bodies, roles not ascribed to IFT. Unifying these findings, we provide evidence that the underlying molecular defects in the che-10 mutant stem from disrupted organization/function of the periciliary membrane, affecting the efficient delivery of basal body-associated and ciliary components and resulting in cilium degeneration. Together, our cloning and functional analyses of C. elegans che-10 provide the first mechanistic insights into how filamentous and nonfilamentous forms of rootletin play essential roles in maintaining ciliary function in metazoans

    Functional aspects of ciliary maintenance in Caenorhabditis elegans

    Get PDF
    Primary cilia are cellular antennae found on many cell types in metazoans. Their biogenesis and maintenance is critical throughout lifespan of an animal to support signal transduction pathways essential for development, and physiological processes such as vision and olfaction. Intraflagellar transport (IFT) is a process that is required to form and maintain cilia. Studies in Chlamydomonas reinhardtii and Caenorhabditis elegans have revealed several components required for ciliogenesis and IFT, but the function and mechanism of many of these proteins are poorly understood. In this dissertation, I identify and characterize two genes, che-10 and dyf-18, that maintain ciliary function at least in part by modulating IFT. I identified CHE-10 as the rootletin ortholog in C. elegans. Rootletin is an evolutionarily conserved protein that exists as polymerized striated rootlets, a cytoskeleton-like structure associated to the cilium-nucleating basal bodies, or as non-filamentous form associated to the ciliary base. Similar to its disruption in mouse model, che-10 mutants initiate ciliogenesis but the cilia degenerate over time. I showed that rootletin maintains cilia by modulating the assembly, motility and flux of IFT components. I also demonstrated that rootletin is essential for the stability of the axoneme, the transition zone, which forms a ciliary gate, and the basal bodies. Finally, I present evidence that the molecular basis of these defects may be due to inefficient delivery of ciliary components and organization at the periciliary membrane compartment, leading to cilium degeneration. DYF-18, a C. elegans CCRK-related Ser-Thr kinase, was uncovered in a screen for genes expressed during ciliogenesis. I show that DYF-18 is expressed in all ciliated sensory neurons. Similar to C. reinhardtii, disruption of DYF-18 leads to ciliary length defects. Finally, I demonstrated that dyf-18 mutants have abnormal accumulation of key IFT components. Specifically, OSM-5 is at the base of cilia and OSM-3 kinesin accumulates between and middle and distal segments of the axoneme. Intriguingly, in spite of the loss of OSM-3 kinesin in the distal segments, dyf-18 mutants can build a full-length cilium. Altogether, my studies offer insights into functional aspects of two novel proteins required for the maintenance of ciliary function in C. elegans
    corecore