14 research outputs found
Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years
Background: The erosion of the early mortality advantage of elective endovascular aneurysm repair (EVAR) compared with open repair of abdominal aortic aneurysm remains without a satisfactory explanation. Methods: An individual-patient data meta-analysis of four multicentre randomized trials of EVAR versus open repair was conducted to a prespecified analysis plan, reporting on mortality, aneurysm-related mortality and reintervention. Results: The analysis included 2783 patients, with 14 245 person-years of follow-up (median 5·5 years). Early (0–6 months after randomization) mortality was lower in the EVAR groups (46 of 1393 versus 73 of 1390 deaths; pooled hazard ratio 0·61, 95 per cent c.i. 0·42 to 0·89; P = 0·010), primarily because 30-day operative mortality was lower in the EVAR groups (16 deaths versus 40 for open repair; pooled odds ratio 0·40, 95 per cent c.i. 0·22 to 0·74). Later (within 3 years) the survival curves converged, remaining converged to 8 years. Beyond 3 years, aneurysm-related mortality was significantly higher in the EVAR groups (19 deaths versus 3 for open repair; pooled hazard ratio 5·16, 1·49 to 17·89; P = 0·010). Patients with moderate renal dysfunction or previous coronary artery disease had no early survival advantage under EVAR. Those with peripheral artery disease had lower mortality under open repair (39 deaths versus 62 for EVAR; P = 0·022) in the period from 6 months to 4 years after randomization. Conclusion: The early survival advantage in the EVAR group, and its subsequent erosion, were confirmed. Over 5 years, patients of marginal fitness had no early survival advantage from EVAR compared with open repair. Aneurysm-related mortality and patients with low ankle : brachial pressure index contributed to the erosion of the early survival advantage for the EVAR group. Trial registration numbers: EVAR-1, ISRCTN55703451; DREAM (Dutch Randomized Endovascular Aneurysm Management), NCT00421330; ACE (Anévrysme de l'aorte abdominale, Chirurgie versus Endoprothèse), NCT00224718; OVER (Open Versus Endovascular Repair Trial for Abdominal Aortic Aneurysms), NCT00094575.</p
Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years
Background: The erosion of the early mortality advantage of elective endovascular aneurysm repair (EVAR) compared with open repair of abdominal aortic aneurysm remains without a satisfactory explanation. Methods: An individual-patient data meta-analysis of four multicentre randomized trials of EVAR versus open repair was conducted to a prespecified analysis plan, reporting on mortality, aneurysm-related mortality and reintervention. Results: The analysis included 2783 patients, with 14 245 person-years of follow-up (median 5·5 years). Early (0–6 months after randomization) mortality was lower in the EVAR groups (46 of 1393 versus 73 of 1390 deaths; pooled hazard ratio 0·61, 95 per cent c.i. 0·42 to 0·89; P = 0·010), primarily because 30-day operative mortality was lower in the EVAR groups (16 deaths versus 40 for open repair; pooled odds ratio 0·40, 95 per cent c.i. 0·22 to 0·74). Later (within 3 years) the survival curves converged, remaining converged to 8 years. Beyond 3 years, aneurysm-related mortality was significantly higher in the EVAR groups (19 deaths versus 3 for open repair; pooled hazard ratio 5·16, 1·49 to 17·89; P = 0·010). Patients with moderate renal dysfunction or previous coronary artery disease had no early survival advantage under EVAR. Those with peripheral artery disease had lower mortality under open repair (39 deaths versus 62 for EVAR; P = 0·022) in the period from 6 months to 4 years after randomization. Conclusion: The early survival advantage in the EVAR group, and its subsequent erosion, were confirmed. Over 5 years, patients of marginal fitness had no early survival advantage from EVAR compared with open repair. Aneurysm-related mortality and patients with low ankle : brachial pressure index contributed to the erosion of the early survival advantage for the EVAR group. Trial registration numbers: EVAR-1, ISRCTN55703451; DREAM (Dutch Randomized Endovascular Aneurysm Management), NCT00421330; ACE (Anévrysme de l'aorte abdominale, Chirurgie versus Endoprothèse), NCT00224718; OVER (Open Versus Endovascular Repair Trial for Abdominal Aortic Aneurysms), NCT00094575.</p
Likelihood-Based Clustering of Meta-Analytic SROC Curves
Meta-analysis of diagnostic studies experience the common problem that different studies mightnot be comparable since they have been using a different cut-off value for the continuous or orderedcategorical diagnostic test value defining different regions for which the diagnostic test is defined to bepositive. Hence specificities and sensitivities arising from different studies might vary just because theunderlying cut-off value had been different. To cope with the cut-off value problem interest is usuallydirected towards the receiver operating characteristic (ROC) curve which consists of pairs of sensitivitiesand false-positive rates (1-specificity). In the context of meta-analysis one pair represents one study andthe associated diagram is called an SROC curve where the S stands for “summary”. In meta-analysis ofdiagnostic studies emphasis has traditionally been placed on modelling this SROC curve with the intentionof providing a summary measure of the diagnostic accuracy by means of an estimate of the summary ROCcurve. Here, we focus instead on finding sub-groups or components in the data representing differentdiagnostic accuracies. The paper will consider modelling SROC curves with the Lehmann family whichis characterised by one parameter only. Each single study can be represented by a specific value of thatparameter. Hence we focus on the distribution of these parameter estimates and suggest modelling apotential heterogeneous or cluster structure by a mixture of specifically parameterised normal densities.We point out that this mixture is completely nonparametric and the associated mixture likelihood is welldefinedand globally bounded. We use the theory and algorithms of nonparametric mixture likelihoodestimation to identify a potential cluster structure in the diagnostic accuracies of the collection of studiesto be analysed. Several meta-analytic applications on diagnostic studies, including AUDIT and AUDIT-Cfor detection of unhealthy alcohol use, the mini-mental state examination for cognitive disorders, as wellas diagnostic accuracy inspection data on metal fatigue of aircraft spare parts, are discussed to illustratethe methodology