2 research outputs found

    A Comparison of Survey Methods for Documenting Presence of Myotis leibii (Eastern Small-Footed Bats) at Roosting Areas in Western Virginia

    Get PDF
    Many aspects of foraging and roosting habitat of Myotis leibii (Eastern Small-Footed Bat), an emergent rock roosting-obligate, are poorly described. Previous comparisons of effectiveness of acoustic sampling and mist-net captures have not included Eastern Small-Footed Bat. Habitat requirements of this species differ from congeners in the region, and it is unclear whether survey protocols developed for other species are applicable. Using data from three overlapping studies at two sampling sites in western Virginia’s central Appalachian Mountains, detection probabilities were examined for three survey methods (acoustic surveys with automated identification of calls, visual searches of rock crevices, and mist-netting) for use in the development of “best practices” for future surveys and monitoring. Observer effects were investigated using an expanded version of visual search data. Results suggested that acoustic surveys with automated call identification are not effective for documenting presence of Eastern Small-Footed Bats on talus slopes (basal detection rate of 0%) even when the species is known to be present. The broadband, high frequency echolocation calls emitted by Eastern Small-Footed Bat may be prone to attenuation by virtue of their high frequencies, and these factors, along with signal reflection, lower echolocation rates or possible misidentification to other bat species over talus slopes may all have contributed to poor acoustic survey success. Visual searches and mist-netting of emergent rock had basal detection probabilities of 91% and 75%, respectively. Success of visual searches varied among observers, but detection probability improved with practice. Additionally, visual searches were considerably more economical than mist-netting

    Winter roost selection of Lasiurine tree bats in a pyric landscape.

    No full text
    Day-roost selection by Lasiurine tree bats during winter and their response to dormant season fires is unknown in the southeastern United States where dormant season burning is widely applied. Although fires historically were predominantly growing season, they now occur in the dormant season in this part of the Coastal Plain to support a myriad of stewardship activities, including habitat management for game species. To examine the response of bats to landscape condition and the application of prescribed fire, in the winter of 2019, we mist-netted and affixed radio-transmitters to 16 Lasiurine bats, primarily Seminole bats (Lasiurus seminolus) at Camp Blanding Joint Training Center in northern Florida. We then located day-roost sites to describe roost attributes. For five Seminole bats, one eastern red bat (Lasiurus borealis), and one hoary bat (Lasiurus cinereus), we applied prescribed burns in the roost area to observe bat response in real-time. Generally, Seminole bats selected day-roosts in mesic forest stands with high mean fire return intervals. At the roost tree scale, Seminole day-roosts tended to be larger, taller and in higher canopy dominance classes than surrounding trees. Seminole bats roosted in longleaf (Pinus palustris), slash (Pinus elliotii) and loblolly pine (Pinus taeda) more than expected based on availability, whereas sweetbay (Magnolia virginiana), water oak (Quercus nigra) and turkey oak (Quercus laevis), were roosted in less than expected based on availability. Of the seven roosts subjected to prescribed burns, only one male Seminole bat and one male eastern red bat evacuated during or immediately following burning. In both cases, these bats had day-roosted at heights lower than the majority of other day-roosts observed during our study. Our results suggest Seminole bats choose winter day-roosts that both maximize solar exposure and minimize risks associated with fire. Nonetheless, because selected day-roosts largely were fire-dependent or tolerant tree species, application of fire does need to periodically occur to promote recruitment and retention of suitable roost sites
    corecore