42 research outputs found

    The relationship between baseline Organizational Readiness to Change Assessment subscale scores and implementation of hepatitis prevention services in substance use disorders treatment clinics: a case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Organizational Readiness to Change Assessment (ORCA) is a measure of organizational readiness for implementing practice change in healthcare settings that is organized based on the core elements and sub-elements of the Promoting Action on Research Implementation in Health Services (PARIHS) framework. General support for the reliability and factor structure of the ORCA has been reported. However, no published study has examined the utility of the ORCA in a clinical setting. The purpose of the current study was to examine the relationship between baseline ORCA scores and implementation of hepatitis prevention services in substance use disorders (SUD) clinics.</p> <p>Methods</p> <p>Nine clinic teams from Veterans Health Administration SUD clinics across the United States participated in a six-month training program to promote evidence-based practices for hepatitis prevention. A representative from each team completed the ORCA evidence and context subscales at baseline.</p> <p>Results</p> <p>Eight of nine clinics reported implementation of at least one new hepatitis prevention practice after completing the six-month training program. Clinic teams were categorized by level of implementation-high (n = 4) versus low (n = 5)-based on how many hepatitis prevention practices were integrated into their clinics after completing the training program. High implementation teams had significantly higher scores on the patient experience and leadership culture subscales of the ORCA compared to low implementation teams. While not reaching significance in this small sample, high implementation clinics also had higher scores on the research, clinical experience, staff culture, leadership behavior, and measurement subscales as compared to low implementation clinics.</p> <p>Conclusions</p> <p>The results of this study suggest that the ORCA was able to measure differences in organizational factors at baseline between clinics that reported high and low implementation of practice recommendations at follow-up. This supports the use of the ORCA to describe factors related to implementing practice recommendations in clinical settings. Future research utilizing larger sample sizes will be essential to support these preliminary findings.</p

    Inhibition of constitutive and cxc-chemokine-induced NF-κB activity potentiates ansamycin-based HSP90-inhibitor cytotoxicity in castrate-resistant prostate cancer cells

    Get PDF
    Background: We determined how CXC-chemokine signalling and necrosis factor-B (NF-B) activity affected heat-shock protein 90 (Hsp90) inhibitor (geldanamycin (GA) and 17-allylamino-demethoxygeldanamycin (17-AAG)) cytotoxicity in castrate-resistant prostate cancer (CRPC).Methods:Geldanamycin and 17-AAG toxicity, together with the CXCR2 antagonist AZ10397767 or NF-B inhibitor BAY11-7082, was assessed by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay in two CRPC lines, DU145 and PC3. Flow cytometry quantified apoptotic or necrosis profiles. Necrosis factor-B activity was determined by luciferase readouts or indirectly by quantitative PCR and ELISA-based determination of CXCL8 expression.Results:Geldanamycin and 17-AAG reduced PC3 and DU145 cell viability, although PC3 cells were less sensitive. Addition of AZ10397767 increased GA (e.g., PC3 IC 20: from 1.670.4 to 0.180.2 nM) and 17-AAG (PC3 IC 20: 43.77.8 to 0.641.8 nM) potency in PC3 but not DU145 cells. Similarly, BAY11-7082 increased the potency of 17-AAG in PC3 but not in DU145 cells, correlating with the elevated constitutive NF-B activity in PC3 cells. AZ10397767 increased 17-AAG-induced apoptosis and necrosis and decreased NF-B activity/CXCL8 expression in 17-AAG-treated PC3 cells.Conclusion:Ansamycin cytotoxicity is enhanced by inhibiting NF-B activity and/or CXC-chemokine signalling in CRPC cells. Detecting and/or inhibiting NF-B activity may aid the selection and treatment response of CRPC patients to Hsp90 inhibitors.</p

    A theory of organizational readiness for change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Change management experts have emphasized the importance of establishing organizational readiness for change and recommended various strategies for creating it. Although the advice seems reasonable, the scientific basis for it is limited. Unlike individual readiness for change, organizational readiness for change has not been subject to extensive theoretical development or empirical study. In this article, I conceptually define organizational readiness for change and develop a theory of its determinants and outcomes. I focus on the organizational level of analysis because many promising approaches to improving healthcare delivery entail collective behavior change in the form of systems redesign--that is, multiple, simultaneous changes in staffing, work flow, decision making, communication, and reward systems.</p> <p>Discussion</p> <p>Organizational readiness for change is a multi-level, multi-faceted construct. As an organization-level construct, readiness for change refers to organizational members' shared resolve to implement a change (change commitment) and shared belief in their collective capability to do so (change efficacy). Organizational readiness for change varies as a function of how much organizational members value the change and how favorably they appraise three key determinants of implementation capability: task demands, resource availability, and situational factors. When organizational readiness for change is high, organizational members are more likely to initiate change, exert greater effort, exhibit greater persistence, and display more cooperative behavior. The result is more effective implementation.</p> <p>Summary</p> <p>The theory described in this article treats organizational readiness as a shared psychological state in which organizational members feel committed to implementing an organizational change and confident in their collective abilities to do so. This way of thinking about organizational readiness is best suited for examining organizational changes where collective behavior change is necessary in order to effectively implement the change and, in some instances, for the change to produce anticipated benefits. Testing the theory would require further measurement development and careful sampling decisions. The theory offers a means of reconciling the structural and psychological views of organizational readiness found in the literature. Further, the theory suggests the possibility that the strategies that change management experts recommend are equifinal. That is, there is no 'one best way' to increase organizational readiness for change.</p

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    Coculture with primary visceral rat adipocytes from control but not streptozotocin-induced diabetic animals increases glucose uptake in rat skeletal muscle cells: Role of adiponectin

    No full text
    We developed a coculture system comprising primary rat adipocytes and L6 rat skeletal muscle cells to allow investigation of the effects of physiologically relevant mixtures of adipokines. We observed that coculture, or adipocyte-conditioned media, increased glucose uptake in muscle cells. An adipokine that could potentially mediate this effect is adiponectin, and wedemonstrated that small interfering RNA-mediated knock-down of adiponectin receptor-2 in muscle cells reduced the uptake of glucose upon coculture with primary rat adipocytes. Analysis of coculture media by ELISA indicated total adiponectin concentration of up to 1 μg/ml, and Western blotting and gel filtration analysis demonstrated that the adipokine profile was hexamer greater than high molecular weight much greater than trimer. We used the streptozotocin-induced rat model of diabetes and found that high-molecularweight adiponectin levels decreased in comparison with control animals and this correlated with the fact that diabetic rat-derived primary adipocytes in coculture did not stimulate glucose uptake to the same extent as control adipocytes. Coculture induced phosphorylation of AMP-activated protein kinase (T172) and interestingly also insulin receptor substrate-1 (Y612) and Akt (T308 & S473), which could be attenuated after adiponectin receptor-2-small interfering RNA treatment. In summary, we believe that this coculture system represents an excellent model to study the effects of primary adipocyte-derived adipokine mixtures on skeletal muscle metabolism, and here we have established that in the context of physiologically relevant mixtures of adipokines, adiponectin may be an important determinant of positive cross talk between adipocytes and skeletal muscle. Copyright © 2007 by The Endocrine Society.link_to_subscribed_fulltex

    Investigating Metalloproteinases MMP-2 and MMP-9 Mechanosensitivity to Feedback Loops Involved in the Regulation of In Vitro Angiogenesis by Endogenous Mechanical Stresses

    No full text
    International audienceAngiogenesis is a complex morphogenetic process regulated by growth factors, but also by the force balance between endothelial cells (EC) traction stresses and extracellular matrix (ECM) viscoelastic resistance. Studies conducted with in vitro angiogenesis assays demonstrated that decreasing ECM stiffness triggers an angiogenic switch that promotes organization of EC into tubular cords or pseudo-capillaries. Thus, mechano-sensitivity of EC with regard to proteases secretion, and notably matrix metalloproteinases (MMPs), should likely play a pivotal role in this switching mechanism. While most studies analysing strain regulation of MMPs used cell cultured on stretched membranes, this work focuses on MMP expression during self-assembly of EC into capillary-like structures within fibrin gels, i.e. on conditions that mimics more closely the in vivo cellular mechanical microenvironment. The activity of MMP-2 and MMP-9, two MMPs that have a pivotal role in capillaries formation, has been monitored in pace with the progressive elongation of EAhy926 cells that takes place during the emergence of cellular cords. We found an increase of the zymogen proMMP-2 that correlates with the initial stages of EC cords formation. However, MMP-2 was not detected. ProMMP-9 secretion decreased, with levels of MMP-9 kept at a rather low value. In order to analyse more precisely the observed differences of EAhy926 response on fibrin and plastic substrates, we proposed a theoretical model of the mechano-regulation of proMMP-2 activation in the presence of type 2 tissue inhibitor of MMPs (TIMP-2). Using association/dissociation rates experimentally reported for this enzymatic network, the model adequately describes the synergism of proMMP-2 and TIMP-2 strain activation during pseudo-capillary morphogenesis. All together, these results provide a first step toward a systems biology approach of angiogenesis mechano-regulation by cell-generated extracellular stresses and strains
    corecore