187 research outputs found
Open source bioimage informatics for cell biology
Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery
Chromosome dynamics: Fuzzy sequences, specific attachments?
AbstractThe assembly of condensed chromosomes in a cell-free system is inhibited by the addition of proteins that bind AT-rich DNA. Does this implicate the AT-rich scaffold attachment regions (SARs) in the formation of chromosomes
Sds22 regulates aurora B activity and microtubule-kinetochore interactions at mitosis
Sds22 defines protein phosphatase 1 location and function at kinetochores and subsequent activity of aurora B in mitosis
Numerically Enhanced Stimulated Emission Depletion Microscopy with Adaptive Optics for Deep-Tissue Super-Resolved Imaging
Copyright © 2019 American Chemical Society. In stimulated emission depletion (STED) nanoscopy, the major origin of decreased signal-to-noise ratio within images can be attributed to sample photobleaching and strong optical aberrations. This is due to STED utilizing a high-power depletion laser (increasing the risk of photodamage), while the depletion beam is very sensitive to sample-induced aberrations. Here, we demonstrate a custom-built STED microscope with automated aberration correction that is capable of 3D super-resolution imaging through thick, highly aberrating tissue. We introduce and investigate a state of the art image denoising method by block-matching and collaborative 3D filtering (BM3D) to numerically enhance fine object details otherwise mixed with noise and further enhance the image quality. Numerical denoising provides an increase in the final effective resolution of the STED imaging of 31% using the well established Fourier ring correlation metric. Results achieved through the combination of aberration correction and tailored image processing are experimentally validated through super-resolved 3D imaging of axons in differentiated induced pluripotent stem cells growing under an 80 μm thick layer of tissue with lateral and axial resolution of 204 and 310 nm, respectively
Analysis of Global RNA Synthesis at the Single Cell Level following Hypoxia
Hypoxia or lowering of the oxygen availability is involved in many physiological and pathological processes. At the molecular level, cells initiate a particular transcriptional program in order to mount an appropriate and coordinated cellular response. The cell possesses several oxygen sensor enzymes that require molecular oxygen as cofactor for their activity. These range from prolyl-hydroxylases to histone demethylases. The majority of studies analyzing cellular responses to hypoxia are based on cellular populations and average studies, and as such single cell analysis of hypoxic cells are seldom performed. Here we describe a method of analysis of global RNA synthesis at the single cell level in hypoxia by using Click-iT RNA imaging kits in an oxygen controlled workstation, followed by microscopy analysis and quantification. Using cancer cells exposed to hypoxia for different lengths of time, RNA is labeled and measured in each cell. This analysis allows the visualization of temporal and cell-to-cell changes in global RNA synthesis following hypoxic stress
Bod1, a novel kinetochore protein required for chromosome biorientation
We have combined the proteomic analysis of Xenopus laevis in vitro–assembled chromosomes with RNA interference and live cell imaging in HeLa cells to identify novel factors required for proper chromosome segregation. The first of these is Bod1, a protein conserved throughout metazoans that associates with a large macromolecular complex and localizes with kinetochores and spindle poles during mitosis. Small interfering RNA depletion of Bod1 in HeLa cells produces elongated mitotic spindles with severe biorientation defects. Bod1-depleted cells form syntelic attachments that can oscillate and generate enough force to separate sister kinetochores, suggesting that microtubule–kinetochore interactions were intact. Releasing Bod1-depleted cells from a monastrol block increases the frequency of syntelic attachments and the number of cells displaying biorientation defects. Bod1 depletion does not affect the activity or localization of Aurora B but does cause mislocalization of the microtubule depolymerase mitotic centromere- associated kinesin and prevents its efficient phosphorylation by Aurora B. Therefore, Bod1 is a novel kinetochore protein that is required for the detection or resolution of syntelic attachments in mitotic spindles
The Ndc80 complex targets Bod1 to human mitotic kinetochores
Regulation of protein phosphatase activity by endogenous protein inhibitors is an important mechanism to control protein phosphorylation in cells. We recently identified Biorientation defective 1 (Bod1) as a small protein inhibitor of protein phosphatase 2A containing the B56 regulatory subunit (PP2A-B56). This phosphatase controls the amount of phosphorylation of several kinetochore proteins and thus the establishment of load-bearing chromosome-spindle attachments in time for accurate separation of sister chromatids in mitosis. Like PP2A-B56, Bod1 directly localizes to mitotic kinetochores and is required for correct segregation of mitotic chromosomes. In this report, we have probed the spatio-temporal regulation of Bod1 during mitotic progression. Kinetochore localization of Bod1 increases from nuclear envelope breakdown until metaphase. Phosphorylation of Bod1 at threonine 95 (T95), which increases Bod1's binding to and inhibition of PP2A-B56, peaks in prometaphase when PP2A-B56 localization to kinetochores is highest. We demonstrate here that kinetochore targeting of Bod1 depends on the outer kinetochore protein Ndc80 and not PP2A-B56. Crucially, Bod1 depletion functionally affects Ndc80 phosphorylation at the N-terminal serine 55 (S55), as well as a number of other phosphorylation sites within the outer kinetochore, including Knl1 at serine 24 and 60 (S24, S60), and threonine T943 and T1155 (T943, T1155). Therefore, Ndc80 recruits a phosphatase inhibitor to kinetochores which directly feeds forward to regulate Ndc80, and Knl1 phosphorylation, including sites that mediate the attachment of microtubules to kinetochores
- …