367 research outputs found

    Survey of classical density functionals for modelling hydrogen physisorption at 77 K

    Get PDF
    This work surveys techniques based on classical density functionals for modeling the quantum dispersion of physisorbed hydrogen at 77 K. Two such techniques are examined in detail. The first is based on the "open ring approximation" (ORA) of Broukhno et al., and it is compared with a technique based on the semiclassical approximation of Feynman and Hibbs (FH). For both techniques, a standard classical density functional is used to model hydrogen molecule-hydrogen molecule (i.e., excess) interactions. The three-dimensional (3D) quantum harmonic oscillator (QHO) system and a model of molecular hydrogen adsorption into a graphitic slit pore at 77 K are used as benchmarks. Density functional results are compared with path-integral Monte Carlo simulations and with exact solutions for the 3D QHO system. It is found that neither of the density functional treatments are entirely satisfactory. However, for hydrogen physisorption studies at 77 K the ORA based technique is generally superior to the FH based technique due to a fortunate cancellation of errors in the density functionals used. But, if more accurate excess functionals are used, the FH technique would be superior

    The self-referential method for linear rigid bodies : application to hard and Lennard-Jones dumbbells

    Get PDF
    The self-referential (SR) method incorporating thermodynamic integration (TI) [Sweatman et al., J. Chem. Phys. 128, 064102 (2008)] is extended to treat systems of rigid linear bodies. The method is then applied to obtain the canonical ensemble Helmholtz free energy of the alpha-N2 and plastic face centered cubic phases of systems of hard and Lennard-Jones dumbbells using Monte Carlo simulations. Generally good agreement with reference literature data is obtained, which indicates that the SR-TI method is potentially very general and robust

    Human Chromosomes: Evaluation of Processing Techniques for Scanning Electron Microscopy

    Get PDF
    Methods for scanning electron microscopy (SEM) of chromosomes have been developed in the last two decades. Technical limitations in the study of human chromosomes, however, have hindered the routine use of SEM in clinical and experimental human cytogenetics. We compared different methodologies, including metal impregnation, air drying and specimen coating. SEM preparation of human chromosomes in which osmium impregnation is mediated by tannic acid, yielded more reproducible results when compared with osmium impregnation protocols previously described. The level of osmium impregnation was systematically evaluated by imaging chromosomes in the backscattering mode. Critical point drying and a light gold-palladium coating were essential for appropriate secondary electron imaging of chromosomes. With this method, and in a preliminary quantitative analysis, we show that our SEM technique is mere sensitive than light microscopy for the detection of aphidicolin-induced fragile sites. This technical approach is useful for chromosomal studies requiring resolution higher than that obtained by light microscopy. Also, it allows the use of clinical and archival chromosomal samples prepared by routine cytogenetic techniques

    Lattice density-functional theory of surface melting: the effect of a square-gradient correction

    Full text link
    I use the method of classical density-functional theory in the weighted-density approximation of Tarazona to investigate the phase diagram and the interface structure of a two-dimensional lattice-gas model with three phases -- vapour, liquid, and triangular solid. While a straightforward mean-field treatment of the interparticle attraction is unable to give a stable liquid phase, the correct phase diagram is obtained when including a suitably chosen square-gradient term in the system grand potential. Taken this theory for granted, I further examine the structure of the solid-vapour interface as the triple point is approached from low temperature. Surprisingly, a novel phase (rather than the liquid) is found to grow at the interface, exhibiting an unusually long modulation along the interface normal. The conventional surface-melting behaviour is recovered only by artificially restricting the symmetries being available to the density field.Comment: 16 pages, 6 figure

    Molecular dynamics investigation of the influence of the hydrogen bond network of water/ethanol mixtures on dielectric spectra

    Get PDF
    The dielectric response of fluids to electromagnetic radiation in the microwave region originates from processes occurring at the molecular level. Understanding these processes in more detail is relevant to many fields, such as microwave heating, fluid mixing, and separation technologies. In this work, we use molecular dynamics simulations to study the dielectric spectra of ethanol/water mixtures. We compare our predictions with experimental results at different compositions. We show how the dielectric response can be estimated to a high level of accuracy using three dielectric relaxations: a dominant and slower process at microwave frequencies and two faster processes. A deeper study of the dynamics of the hydrogen bond network formed in these systems reveals how collective processes between the individual species are the origin of the final dielectric response. Our results agree with the "wait-and-switch" mechanism, which describes the dynamics of the hydrogen bond network as the combination of two processes: the fast breakage and formation of individual hydrogen bonds and the subsequent reorganization of the entire network once this process becomes energetically favorable. Since the dielectric response is related to dipole reorientations in the system, it is directly linked to these mechanisms

    The Effect of Adult Aggression on Habitat Selection by Settlers of Two Coral-Dwelling Damselfishes

    Get PDF
    Coral-reef fishes experience a major challenge when facing settlement in a multi-threat environment, within which, using settlement cues, they need to select a suitable site. Studies in laboratories and artificial setups have shown that the presence of conspecific adults often serves as a positive settlement cue, whose value is explained by the increased survival of juveniles in an already proven fit environment. However, settlement in already inhabited corals may expose the recruits to adult aggression. Daily observations and manipulation experiments were used in the present study, which was conducted in the natural reef. We revealed differential strategies of settlers, which do not necessarily join conspecific adults. Dascyllus aruanus prefer to settle near (not with) their aggressive adults, and to join them only after gaining in size; whereas Dascyllus marginatus settlers in densely populated reefs settle independently of their adult distribution. Our results present different solutions to the challenges faced by fish recruits while selecting their microhabitat, and emphasize the complexity of habitat selection by the naïve settlers. Although laboratory experiments are important to the understanding of fish habitat selection, further studies in natural habitats are essential in order to elucidate the actual patterns of settlement and habitat selection, which are crucial for the survival of coral-reef fish populations
    • …
    corecore