10 research outputs found
Multiplex transcriptional characterizations across diverse bacterial species using cellâfree systems
Abstract Cellâfree expression systems enable rapid prototyping of genetic programs in vitro. However, current throughput of cellâfree measurements is limited by the use of channelâlimited fluorescent readouts. Here, we describe DNA Regulatory element Analysis by cellâFree Transcription and Sequencing (DRAFTS), a rapid and robust in vitro approach for multiplexed measurement of transcriptional activities from thousands of regulatory sequences in a single reaction. We employ this method in active cell lysates developed from ten diverse bacterial species. Interspecies analysis of transcriptional profiles from > 1,000 diverse regulatory sequences reveals functional differences in promoter activity that can be quantitatively modeled, providing a rich resource for tuning gene expression in diverse bacterial species. Finally, we examine the transcriptional capacities of dualâspecies hybrid lysates that can simultaneously harness gene expression properties of multiple organisms. We expect that this cellâfree multiplex transcriptional measurement approach will improve genetic part prototyping in new bacterial chassis for synthetic biology
Multiplex transcriptional characterizations across diverse bacterial species using cellâfree systems
Abstract Cellâfree expression systems enable rapid prototyping of genetic programs in vitro. However, current throughput of cellâfree measurements is limited by the use of channelâlimited fluorescent readouts. Here, we describe DNA Regulatory element Analysis by cellâFree Transcription and Sequencing (DRAFTS), a rapid and robust in vitro approach for multiplexed measurement of transcriptional activities from thousands of regulatory sequences in a single reaction. We employ this method in active cell lysates developed from ten diverse bacterial species. Interspecies analysis of transcriptional profiles from > 1,000 diverse regulatory sequences reveals functional differences in promoter activity that can be quantitatively modeled, providing a rich resource for tuning gene expression in diverse bacterial species. Finally, we examine the transcriptional capacities of dualâspecies hybrid lysates that can simultaneously harness gene expression properties of multiple organisms. We expect that this cellâfree multiplex transcriptional measurement approach will improve genetic part prototyping in new bacterial chassis for synthetic biology