90 research outputs found
Optineurin, a multifunctional protein involved in glaucoma, amyotrophic lateral sclerosis and antiviral signalling
This article does not have an abstract
Regulation of p73 by Hck through kinase-dependent and independent mechanisms
<p>Abstract</p> <p>Background</p> <p>p73, a p53 family member is a transcription factor that plays a role in cell cycle, differentiation and apoptosis. p73 is regulated through post translational modifications and protein interactions. c-Abl is the only known tyrosine kinase that phosphorylates and activates p73. Here we have analyzed the role of Src family kinases, which are involved in diverse signaling pathways, in regulating p73.</p> <p>Results</p> <p>Exogenously expressed as well as cellular Hck and p73 interact <it>in vivo</it>. <it>In vitro </it>binding assays show that SH3 domain of Hck interacts with p73. Co-expression of p73 with Hck or c-Src in mammalian cells resulted in tyrosine phosphorylation of p73. Using site directed mutational analysis, we determined that Tyr-28 was the major site of phosphorylation by Hck and c-Src, unlike c-Abl which phosphorylates Tyr-99. In a kinase dependent manner, Hck co-expression resulted in stabilization of p73 protein in the cytoplasm. Activation of Hck in HL-60 cells resulted in tyrosine phosphorylation of endogenous p73. Both exogenous and endogenous Hck localize to the nuclear as well as cytoplasmic compartment, just as does p73. Ectopically expressed Hck repressed the transcriptional activity of p73 as determined by promoter assays and semi-quantitative RT-PCR analysis of the p73 target, Ipaf and MDM2. SH3 domain- dependent function of Hck was required for its effect on p73 activity, which was also reflected in its ability to inhibit p73-mediated apoptosis. We also show that Hck interacts with Yes associated protein (YAP), a transcriptional co-activator of p73, and shRNA mediated knockdown of YAP protein reduces p73 induced Ipaf promoter activation.</p> <p>Conclusion</p> <p>We have identified p73 as a novel substrate and interacting partner of Hck and show that it regulates p73 through mechanisms that are dependent on either catalytic activity or protein interaction domains. Hck-SH3 domain-mediated interactions play an important role in the inhibition of p73-dependent transcriptional activation of a target gene, Ipaf, as well as apoptosis.</p
Phosphorylated guanine nucleotide exchange factor C3G, induced by pervanadate and Src family kinases localizes to the Golgi and subcortical actin cytoskeleton
BACKGROUND: The guanine nucleotide exchange factor C3G (RapGEF1) along with its effector proteins participates in signaling pathways that regulate eukaryotic cell proliferation, adhesion, apoptosis and embryonic development. It activates Rap1, Rap2 and R-Ras members of the Ras family of GTPases. C3G is activated upon phosphorylation at tyrosine 504 and therefore, determining the localization of phosphorylated C3G would provide an insight into its site of action in the cellular context. RESULTS: C3G is phosphorylated in vivo on Y504 upon coexpression with Src or Hck, two members of the Src family tyrosine kinases. Here we have determined the subcellular localization of this protein using antibodies specific to C3G and Tyr 504 phosphorylated C3G (pY504 C3G). While exogenously expressed C3G was present mostly in the cytosol, pY504 C3G formed upon Hck or Src coexpression localized predominantly at the cell membrane and the Golgi complex. Tyrosine 504-phosphorylated C3G showed colocalization with Hck and Src. Treatment of Hck and C3G transfected cells with pervanadate showed an increase in the cytosolic staining of pY504 C3G suggesting that tyrosine phosphatases may be involved in dephosphorylating cytosolic phospho-C3G. Expression of Src family kinases or treatment of cells with pervanadate resulted in an increase in endogenous pY504 C3G, which was localized predominantly at the Golgi and the cell periphery. Endogenous pY504 C3G at the cell periphery colocalized with F-actin suggesting its presence at the subcortical actin cytoskeleton. Disruption of actin cytoskeleton by cytochalasin D abolished phospho-C3G staining at the periphery of the cell without affecting its Golgi localization. CONCLUSIONS: These findings show that tyrosine kinases involved in phosphorylation of C3G are responsible for regulation of its localization in a cellular context. We have demonstrated the localization of endogenous C3G modified by tyrosine phosphorylation to defined subcellular domains where it may be responsible for restricted activation of signaling pathways
Regulation of endocytic trafficking of transferrin receptor by optineurin and its impairment by a glaucoma-associated mutant
Background Optineurin is a multifunctional protein involved in several functions such as vesicular trafficking from the Golgi to the plasma membrane, NF-κB regulation, signal transduction and gene expression. Mutations in optineurin are associated with glaucoma, a neurodegenerative eye disease that causes blindness. Genetic evidence suggests that the E50K (Glu50Lys) is a dominant disease-causing mutation of optineurin. However, functional alterations caused by mutations in optineurin are not known. Here, we have analyzed the role of optineurin in endocytic recycling and the effect of E50K mutant on this process. Results We show that the knockdown of optineurin impairs trafficking of transferrin receptor to the juxtanuclear region. A point mutation (D474N) in the ubiquitin-binding domain abrogates localization of optineurin to the recycling endosomes and interaction with transferrin receptor. The function of ubiquitin-binding domain of optineurin is also needed for trafficking of transferrin to the juxtanuclear region. A disease causing mutation, E50K, impairs endocytic recycling of transferrin receptor as shown by enlarged recycling endosomes, slower dynamics of E50K vesicles and decreased transferrin uptake by the E50K-expressing cells. This impaired trafficking by the E50K mutant requires the function of its ubiquitin-binding domain. Compared to wild type optineurin, the E50K optineurin shows enhanced interaction and colocalization with transferrin receptor and Rab8. The velocity of Rab8 vesicles is reduced by co-expression of the E50K mutant. These results suggest that the E50K mutant affects Rab8-mediated transferrin receptor trafficking. Conclusions Our results suggest that optineurin regulates endocytic trafficking of transferrin receptor to the juxtanuclear region. The E50K mutant impairs trafficking at the recycling endosomes due to altered interactions with Rab8 and transferrin receptor. These results also have implications for the pathogenesis of glaucoma caused by the E50K mutation because endocytic recycling is vital for maintaining homeostasis
NF-κB Mediates Tumor Necrosis Factor α-Induced Expression of Optineurin, a Negative Regulator of NF-κB
Optineurin is a ubiquitously expressed multifunctional cytoplasmic protein encoded by OPTN gene. The expression of optineurin is induced by various cytokines. Here we have investigated the molecular mechanisms which regulate optineurin gene expression and the relationship between optineurin and nuclear factor κB (NF-κB). We cloned and characterized human optineurin promoter. Optineurin promoter was activated upon treatment of HeLa and A549 cells with tumor necrosis factor α (TNFα). Mutation of a putative NF-κB-binding site present in the core promoter resulted in loss of basal as well as TNFα-induced activity. Overexpression of p65 subunit of NF-κB activated this promoter through NF-κB site. Oligonucleotides corresponding to this putative NF-κB-binding site showed binding to NF-κB. TNFα-induced optineurin promoter activity was inhibited by expression of inhibitor of NF-κB (IκBα) super-repressor. Blocking of NF-κB activation resulted in inhibition of TNFα-induced optineurin gene expression. Overexpressed optineurin partly inhibited TNFα-induced NF-κB activation in Hela cells. Downregulation of optineurin by shRNA resulted in an increase in TNFα-induced as well as basal NF-κB activity. These results show that optineurin promoter activity and gene expression are regulated by NF-κB pathway in response to TNFα. In addition these results suggest that there is a negative feedback loop in which TNFα-induced NF-κB activity mediates expression of optineurin, which itself functions as a negative regulator of NF-κB
Optineurin Is Required for CYLD-Dependent Inhibition of TNFα-Induced NF-κB Activation
The nuclear factor kappa B (NF-κB) regulates genes that function in diverse cellular processes like inflammation, immunity and cell survival. The activation of NF-κB is tightly controlled and the deubiquitinase CYLD has emerged as a key negative regulator of NF-κB signalling. Optineurin, mutated in certain glaucomas and amyotrophic lateral sclerosis, is also a negative regulator of NF-κB activation. It competes with NEMO (NF-κB essential modulator) for binding to ubiquitinated RIP (receptor interacting protein) to prevent NF-κB activation. Recently we identified CYLD as optineurin-interacting protein. Here we have analysed the functional significance of interaction of optineurin with CYLD. Our results show that a glaucoma-associated mutant of optineurin, H486R, is altered in its interaction with CYLD. Unlike wild-type optineurin, the H486R mutant did not inhibit tumour necrosis factor α (TNFα)-induced NF-κB activation. CYLD mediated inhibition of TNFα-induced NF-κB activation was abrogated by expression of the H486R mutant. Upon knockdown of optineurin, CYLD was unable to inhibit TNFα-induced NF-κB activation and showed drastically reduced interaction with ubiquitinated RIP. The level of ubiquitinated RIP was increased in optineurin knockdown cells. Deubiquitination of RIP by over-expressed CYLD was abrogated in optineurin knockdown cells. These results suggest that optineurin regulates NF-κB activation by mediating interaction of CYLD with ubiquitinated RIP thus facilitating deubiquitination of RIP
Altered Functions and Interactions of Glaucoma-Associated Mutants of Optineurin
Optineurin (OPTN) is an adaptor protein that is involved in mediating a variety of cellular processes such as signaling, vesicle trafficking, and autophagy. Certain mutations in OPTN (gene OPTN) are associated with primary open angle glaucoma, a leading cause of irreversible blindness, and amyotrophic lateral sclerosis, a fatal motor neuron disease. Glaucoma-associated mutations of OPTN are mostly missense mutations. OPTN mediates its functions by interacting with various proteins and altered interactions of OPTN mutants with various proteins primarily contribute to functional defects. It interacts with Rab8, myosin VI, Huntigtin, TBC1D17, and transferrin receptor to mediate various membrane vesicle trafficking pathways. It is an autophagy receptor that mediates cargo-selective as well as non-selective autophagy. Glaucoma-associated mutants of OPTN, E50K, and M98K, cause defective vesicle trafficking, autophagy, and signaling that contribute to death of retinal ganglion cells (RGCs). Transgenic mice expressing E50K-OPTN show loss of RGCs and persistent reactive gliosis. TBK1 protein kinase, which mediates E50K-OPTN and M98K-OPTN induced cell death, is emerging as a potential drug target. Autoimmunity has been implicated in glaucoma but involvement of OPTN or its mutants in autoimmnity has not been explored. In this review, we highlight the main functions of OPTN and how glaucoma-associated mutants alter these functions. We also discuss some of the controversies, such as the role of OPTN in signaling to transcription factor NF-κB, interferon signaling, and use of RGC-5 cell line as a cell culture model
Evidence for a role of transmembrane protein p25 in localization of protein tyrosine phosphatase TC48 to the ER
T-cell protein tyrosine phosphatase gives rise to two splice isoforms: TC48, which is localized to the endoplasmic reticulum (ER) and TC45, a nuclear protein. The present study was undertaken to identify proteins that are involved in targeting TC48 to the ER. We identified two TC48-interacting proteins, p25 and p23, from a yeast two-hybrid screen. p23 and p25 are members of a family of putative cargo receptors that are important for vesicular trafficking between Golgi complex and ER. Both p23 and p25 associate with overexpressed TC48 in Cos-1 cells as determined by coimmunoprecipitation. A significant amount of TC48 colocalized initially with ERGIC and Golgi complex markers (in addition to ER and nuclear membrane localization) and was then retrieved to the ER. Coexpression with p25 enhanced ER localization of TC48, whereas coexpression with p23 resulted in its trapping in membranous structures. Coexpression of a p25 mutant lacking the ER-localization signal KKxx resulted in enhanced Golgi localization of TC48. Forty C-terminal amino acid residues of TC48 (position 376-415) were sufficient for interaction with p23 (but not with p25) and targeted green fluorescence protein (GFP) to the Golgi complex. Targeting of GFP to the ER required 66 C-terminal amino acid residues of TC48 (position 350-415), which showed interaction with p25 and p23. We suggest that TC48 translocates to the Golgi complex along the secretory pathway, whereas its ER localization is maintained by selective retrieval enabled by interactions with p25 and p23
Reaction of brain hexokinase with a substrate-like reagent. Alkylation of a single thiol at the active site
An analogue of the substrate glucose, N-(bromoacetyl)-D-glucosamine (GlcNBrAc) inactivates bovine brain mitochondrial hexokinase completely and irreversibly in a pseudo-first-order fashion at pH 8.5 and 22°C. The rate of inactivation of hexokinase by this reagent does not increase linearly with increasing reagent concentration but exhibits an apparent saturation effect, suggesting the formation of a reversible complex between the enzyme and the reagent prior to the inactivation step. The pH dependence of the rate of inactivation suggests that a group on the enzyme with pKa = 9.1 is being modified by this reagent. At pH 8.0 the rate of inactivation by this reagent is very slow, and it can be shown to be a competitive inhibitor of the hexokinase reaction with respect to the substrate glucose. The substrates glucose and ATP strongly protected the enzyme against the inactivation reaction. The inactivation of the enzyme was found to be accompanied by the alkylation of two sulfhydryl residues as shown by the formation of approximately 2 mol of S-(carboxymethyl)-cysteine/mol of inactivated enzyme. Treatment of the enzyme with 14C-labeled reagent results in the incorporation of approximately 2 mol of reagent/mol of inactivated enzyme. However, the enzyme protected by glucose still shows the incorporation of approximately 1 mol of the labeled reagent/mol of the enzyme. From a tryptic digest of the enzyme inactivated by this reagent, two labeled peptides were obtained, one of which was absent if the labeling reaction was carried out in presence of glucose. These results indicate that the affinity reagent reacts with two thiols, only one of which is crucial for the activity of the enzyme and is located in the region of its active site
- …