9,839 research outputs found
Preliminary evaluation of Glass Resin materials for solar cell cover use
The glass resins were deposited by several techniques on 200 micron thick cells and on 50 microns thick wafers. The covered cells were exposed to ultraviolet light in vacuum to an intensity of 10 UV energy-equivalent solar constants at air mass zero for 728 hr. The exposure was followed by a single long thermal cycle from ambient temperature to -150 C. Visual inspection of the samples indicated that all samples had darkened to varying degrees. The loss in short-circuit current was found to range from 8 to 24%, depending on the resin formulation. In another test over 40 glass resin-coated silicon wafers withstood 15 thermal cycles from 100 to-196 C in one or more of the thicknesses tested. Several of the resin-coated wafers were tested at 65 C and 90% relative humidity for 170 hr. No change in physical appearance was detected
A proposed generalized constitutive equation for nonlinear para-isotropic materials
Finite element models of varying complexities were used to solve problems in solid mechanics. Particular emphasis was given to concrete which is nonisotropic at any level of deformation and is also nonlinear in terms of stress-strain relationships
Investigating 16O with the 15N(p,{\alpha})12C reaction
The 16O nucleus was investigated through the 15N(p,{\alpha})12C reaction at
excitation energies from Ex = 12 231 to 15 700 keV using proton beams from a 5
MeV Van de Graaff accelerator at beam energies of Ep = 331 to 3800 keV. Alpha
decay from resonant states in 16O was strongly observed for ten known excited
states in this region. The candidate 4-alpha cluster state at Ex = 15.1 MeV was
investigated particularly intensely in order to understand its particle decay
channels.Comment: Submitted for Proceedings of Fourth International Workshop on State
of the Art in Nuclear Cluster Physics (SOTANCP4), held from May 13 - 18, 2018
in Galveston, TX, US
Measurements with the Chandra X-Ray Observatory's flight contamination monitor
NASA's Chandra X-ray Observatory includes a Flight Contamination Monitor
(FCM), a system of 16 radioactive calibration sources mounted to the inside of
the Observatory's forward contamination cover. The purpose of the FCM is to
verify the ground-to-orbit transfer of the Chandra flux scale, through
comparison of data acquired during the ground calibration with those obtained
in orbit, immediately prior to opening the Observatory's sun-shade door. Here
we report results of these measurements, which place limits on the change in
mirror--detector system response and, hence, on any accumulation of molecular
contamination on the mirrors' iridium-coated surfaces.Comment: 7pages,8figures,for SPIE 4012, paper 7
Oscillatory Spin Polarization and Magneto-Optic Kerr Effect in Fe3O4 Thin Films on GaAs(001)
The spin dependent properties of epitaxial Fe3O4 thin films on GaAs(001) are
studied by the ferromagnetic proximity polarization (FPP) effect and
magneto-optic Kerr effect (MOKE). Both FPP and MOKE show oscillations with
respect to Fe3O4 film thickness, and the oscillations are large enough to
induce repeated sign reversals. We attribute the oscillatory behavior to
spin-polarized quantum well states forming in the Fe3O4 film. Quantum
confinement of the t2g states near the Fermi level provides an explanation for
the similar thickness dependences of the FPP and MOKE oscillations.Comment: to appear in Phys. Rev. Let
Integrated monitoring of water allocation reform in South Africa
South Africa faces significant inequities in the allocation of water for productive purposes. Water allocation is one component of a wider government mandate to address the inequities of the past. Water allocation reform is being implemented by the South African Department of Water Affairs and Forestry (DWAF), through the Water Allocation Reform (WAR) Programme. This paper presents an approach for determining indicators that can be used to monitor targets for WAR and for prioritising areas for specific WAR interventions. The approach integrates water use data with environmental, economic and equity data to provide a holistic picture of the progress and benefits of WAR. Limitations of the approach are discussed, specifically related to the data on which the indicators are based. The development of data for the equity indicator presents specific challenges which are discussed through examples from its application in four case study areas.Keywords: monitoring, water allocation reform, equity, indicators, South Afric
Solar electric propulsion for Mars transport vehicles
Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed
Epitaxial EuO Thin Films on GaAs
We demonstrate the epitaxial growth of EuO on GaAs by reactive molecular beam
epitaxy. Thin films are grown in an adsorption-controlled regime with the aid
of an MgO diffusion barrier. Despite the large lattice mismatch, it is shown
that EuO grows well on MgO(001) with excellent magnetic properties. Epitaxy on
GaAs is cube-on-cube and longitudinal magneto-optic Kerr effect measurements
demonstrate a large Kerr rotation of 0.57{\deg}, a significant remanent
magnetization, and a Curie temperature of 69 K.Comment: 5 pages, 3 figure
Direct Determination of the Kinetics of Oxygen Diffusion to the Photocytes of a Bioluminescent Elaterid Larva, Measurement of Gas- and Aqueous-Phase Diffusional Barriers and Modelling of Oxygen Supply
We describe the development and use of a direct kinetic technique to determine the time taken for oxygen to diffuse from the external environment into the light-producing cells (photocytes) in the prothorax of bioluminescent larvae of Pyrearinus termitilluminans. This was achieved by measuring the time course of the pseudoflash induced through sequential anoxia followed by normoxia. We have also determined the separate times taken for this oxygen diffusion in gaseous and tissue (predominantly aqueous) phases by using helium and nitrogen as the carrier gas. Of the total time taken for diffusion, that in the gas phase required 613+/-136 ms (mean +/- s.e. m., N=5) whilst that in the aqueous phase required 1313+/-187 ms. These values imply pathlengths of diffusion in the gaseous and aqueous phases of 4.80x10(-)(3)+/-0.53x10(-)(3) and 8. 89x10(-)(5)+/-0.61x10(-)(5 )m, respectively. In addition, the pathlength of gas-phase diffusion was used to derive a parameter relating to the tortuosity of the tracheal system. These values, together with those obtained upon bioluminescent oxygen consumption, have been used to model oxygen supply to the photocyte. From these studies, it would also appear that the modulation of tracheolar fluid levels might be a significant mechanism of control of tissue oxygen levels in at least some insects
Lattice-dynamics of a Disordered solid-solid Interface
Generic properties of elastic phonon transport at a disordered interface are
studied. The results show that phonon transmittance is a strong function of
frequency and the disorder correlation length. At frequencies lower than the
van Hove singularity the transmittance at a given frequency increases as the
correlation length decreases. At low frequencies, this is reflected by
different power-laws for phonon conductance across correlated and uncorrelated
disordered interfaces which are in approximate agreement with perturbation
theory of an elastic continuum. These results can be understood in terms of
simple mosaic and two-colour models of the interface.Comment: 17 pages, 5 figures, submitted to PR
- …