10,669 research outputs found
Preliminary evaluation of Glass Resin materials for solar cell cover use
The glass resins were deposited by several techniques on 200 micron thick cells and on 50 microns thick wafers. The covered cells were exposed to ultraviolet light in vacuum to an intensity of 10 UV energy-equivalent solar constants at air mass zero for 728 hr. The exposure was followed by a single long thermal cycle from ambient temperature to -150 C. Visual inspection of the samples indicated that all samples had darkened to varying degrees. The loss in short-circuit current was found to range from 8 to 24%, depending on the resin formulation. In another test over 40 glass resin-coated silicon wafers withstood 15 thermal cycles from 100 to-196 C in one or more of the thicknesses tested. Several of the resin-coated wafers were tested at 65 C and 90% relative humidity for 170 hr. No change in physical appearance was detected
GaAs homojunction solar cell development
The Lincoln Laboratory n(+)/p/p(+) GaAs shallow homojunction cell structure was successfully demonstrated on 2 by 2 cm GaAs substrates. Air mass zero efficiencies of the seven cells produced to date range from 13.6 to 15.6 percent. Current voltage (I-V) characteristics, spectral response, and measurements were made on all seven cells. Preliminary analysis of 1 MeV electron radiation damage data indicate excellent radiation resistance for these cells
Radiation resistance and comparative performance of ITO/InP and n/p InP homojunction solar cells
The radiation resistance of ITO/InP cells processed by DC magnetron sputtering is compared to that of standard n/p InP and GaAs homojunction cells. After 20 MeV proton irradiations, it is found that the radiation resistance of the present ITO/InP cell is comparable to that of the n/p homojunction InP cell and that both InP cell types have radiation resistance significantly greater than GaAs. The relatively lower radiation resistance, observed at higher fluence, for the InP cell with the deepest junction depth, is attributed to losses in the cells emitter region. Diode parameters obtained from I sub sc - V sub oc plots, data from surface Raman spectroscopy, and determinations of surface conductivity types are used to investigate the configuration of the ITO/InP cells. It is concluded that thesee latter cells are n/p homojunctions, the n-region consisting of a disordered layer at the oxide semiconductor
Measurements with the Chandra X-Ray Observatory's flight contamination monitor
NASA's Chandra X-ray Observatory includes a Flight Contamination Monitor
(FCM), a system of 16 radioactive calibration sources mounted to the inside of
the Observatory's forward contamination cover. The purpose of the FCM is to
verify the ground-to-orbit transfer of the Chandra flux scale, through
comparison of data acquired during the ground calibration with those obtained
in orbit, immediately prior to opening the Observatory's sun-shade door. Here
we report results of these measurements, which place limits on the change in
mirror--detector system response and, hence, on any accumulation of molecular
contamination on the mirrors' iridium-coated surfaces.Comment: 7pages,8figures,for SPIE 4012, paper 7
Radiation damage and annealing in large area n+/p/p+ GaAs shallow homojunction solar cells
Annealing of radiation damage was observed for the first time in VPE-grown, 2- by 2-cm, n+/p/p+ GaAs shallow homojunction solar cells. Electrical performance of several cells was determined as a function of 1-MeV electron fluence in the range of 10 to the 13th power to 10 to the 15th power e-/sq cm and as a function of thermal annealing time at various temperatures. Degradation of normalized power output after a fluence of 10 to the 15th power 1-MeV electrons/sq cm ranged from a low of 24 to 31 percent of initial maximum power. Normalized short circuit current degradation was limited to the range from 10 to 19 percent of preirradiated values. Thermal annealing was carried out in a flowing nitrogen gas ambient, with annealing temperatures spanning the range from 125 to 200 C. Substantial recovery of short circuit current was observed at temperatures as low as 175 C. In one case improvement by as much as 10 percent of the postirradiated value was observed. The key features of these cells are their extremely thin emitter layers (approxmately 0.05 micrometers), the absence of any Al sub xGd sub 1-x As passivating window layer, and their fabrication by vapor phase epitaxy
Oscillatory Spin Polarization and Magneto-Optic Kerr Effect in Fe3O4 Thin Films on GaAs(001)
The spin dependent properties of epitaxial Fe3O4 thin films on GaAs(001) are
studied by the ferromagnetic proximity polarization (FPP) effect and
magneto-optic Kerr effect (MOKE). Both FPP and MOKE show oscillations with
respect to Fe3O4 film thickness, and the oscillations are large enough to
induce repeated sign reversals. We attribute the oscillatory behavior to
spin-polarized quantum well states forming in the Fe3O4 film. Quantum
confinement of the t2g states near the Fermi level provides an explanation for
the similar thickness dependences of the FPP and MOKE oscillations.Comment: to appear in Phys. Rev. Let
The optimal polarizations for achieving maximum contrast in radar images
There is considerable interest in determining the optimal polarizations that maximize contrast between two scattering classes in polarimetric radar images. A systematic approach is presented for obtaining the optimal polarimetric matched filter, i.e., that filter which produces maximum contrast between two scattering classes. The maximization procedure involves solving an eigenvalue problem where the eigenvector corresponding to the maximum contrast ratio is an optimal polarimetric matched filter. To exhibit the physical significance of this filter, it is transformed into its associated transmitting and receiving polarization states, written in terms of horizontal and vertical vector components. For the special case where the transmitting polarization is fixed, the receiving polarization which maximizes the contrast ratio is also obtained. Polarimetric filtering is then applies to synthetic aperture radar images obtained from the Jet Propulsion Laboratory. It is shown, both numerically and through the use of radar imagery, that maximum image contrast can be realized when data is processed with the optimal polarimeter matched filter
- …