5 research outputs found

    Honey Extracted Polyphenolics Reduce Experimental Hypoxia in Human Keratinocytes Culture

    No full text
    Hypoxic assault affects fundamental cellular processes and generates oxidative stress on healthy cells/molecules. Honey extracted polyphenolics (HEP) as a natural antioxidant reduced hypoxic cytotoxicity in this study. Different honey samples were physicochemically characterized to identify preferred (jamun) honey [pH 3.55 ± 0.04, conductivity (μs/cm) = 6.66 ± 0.14, water content % (w/w) = 14.70 ± 0.35, total solid content % (w/w) = 85.30 ± 0.35, phenol content (mg GAE/100 g) = 403.55 ± 0.35, flavonoid content (mg QE/100 g) = 276.76 ± 4.10, radical scavenging activity (% 500 μL) = 147.75 ± 3.13, catalase activity (absorbance at 620 nm) = 0.226 ± 0.01]. HEP was tested in different doses on hypoxic and normoxic cells (HaCaT) using viability and antioxidant assays. Cardinal molecular expressions such as cadherin–catenin–cytoskeleton complex (namely, E-cadherin, β-catenin, and F-actin), hypoxia marker (Hif 1 α), proliferation marker (Ki67), and epithelial master regulator (p63) were studied by immuno-cytochemisty (ICC) and qRT-PCR. The 0.063 mg/mL HEP demonstrated better vitality and functionality of HaCaT cells as per viability assay (*, <i>P</i> < 0.01) even under hypoxia. ICC and qRT-PCR observations indicated restoration of cellular survival and homeostasis under 0.063 mg/mL HEP after hypoxic assault. Furthermore, major spectral changes for nucleic acid and membrane phospholipid reorganizations by Fourier transform infrared spectroscopy illustrated a positive impact of 0.063 mg/mL HEP on hypoxic cells considering proliferation and cellular integrity. It was concluded that a specific dose of jamun HEP reduces hypoxic cytotoxicity

    H-NMR based serum metabolomic signatures imperative in retinalneurodegeneration and development of Diabetic Retinopathy

    Get PDF
    Aim: To identify serum metabolomic fingerprints using 1H NMR in Diabetic Retinopathy (DR). Methods and Materials: 1H-NMR was performed on 32 subjects [11 type 2 diabetic patients each without DR (group A) and with DR (group B) along with 10 control (group C)]. Results:The study unraveled 1H-NMR based serum metabolomic fingerprints of diabetic retinopathy showed significant variations in Ribitol, D-glucose, Fructose-6-phosphate, Uridine Diphosphate-N-acetyl glucosamine and Glycerophosphocholine. The study envisaged that abnormal polyol metabolism and accumulation of ribitol contributory to development of diabetic retinopathy.Presence of Uridine Diphosphate-N-acetylglucosamine in blood has been also confirmed its probable role in progressive neurodegeneration in diabetic retinopathy. NMR spectra also indicated that downregulation of glycerophosphocholine is directly related to retinol metabolism and subsequent unusual chromophore synthesis facilitating retinal degeneration. Conclusion:Five metabolomic fingerprints have been identified and found to be unique in Diabetic Retinopathy (DR)

    Computational analysis of p63 + nuclei distribution pattern by graph theoretic approach in an oral pre-cancer (sub-mucous fibrosis)

    No full text
    Background: Oral submucous fibrosis (OSF) is a pre-cancerous condition with features of chronic, inflammatory and progressive sub-epithelial fibrotic disorder of the buccal mucosa. In this study, malignant potentiality of OSF has been assessed by quantification of immunohistochemical expression of epithelial prime regulator-p63 molecule in correlation to its malignant (oral squamous cell carcinoma [OSCC] and normal counterpart [normal oral mucosa [NOM]). Attributes of spatial extent and distribution of p63 + expression in the epithelium have been investigated. Further, a correlated assessment of histopathological attributes inferred from H&E staining and their mathematical counterparts (molecular pathology of p63) have been proposed. The suggested analytical framework envisaged standardization of the immunohistochemistry evaluation procedure for the molecular marker, using computer-aided image analysis, toward enhancing its prognostic value. Subjects and Methods: In histopathologically confirmed OSF, OSCC and NOM tissue sections, p63 + nuclei were localized and segmented by identifying regional maxima in plateau-like intensity spatial profiles of nuclei. The clustered nuclei were localized and segmented by identifying concave points in the morphometry and by marker-controlled watersheds. Voronoi tessellations were constructed around nuclei centroids and mean values of spatial-relation metrics such as tessellation area, tessellation perimeter, roundness factor and disorder of the area were extracted. Morphology and extent of expression are characterized by area, diameter, perimeter, compactness, eccentricity and density, fraction of p63 + expression and expression distance of p63 + nuclei. Results: Correlative framework between histopathological features characterizing malignant potentiality and their quantitative p63 counterparts was developed. Statistical analyses of mathematical trends were evaluated between different biologically relevant combinations: (i) NOM to oral submucous fibrosis without dysplasia (OSFWT) (ii) NOM to oral submucous fibrosis with dysplasia (OSFWD) (iii) OSFWT-OSFWD (iv) OSFWD-OSCC. Significant histopathogical correlates and their corroborative mathematical features, inferred from p63 staining, were also investigated into. Conclusion: Quantitative assessment and correlative analysis identified mathematical features related to hyperplasia, cellular stratification, differentiation and maturation, shape and size, nuclear crowding and nucleocytoplasmic ratio. It is envisaged that this approach for analyzing the p63 expression and its distribution pattern may help to establish it as a quantitative bio-marker to predict the malignant potentiality and progression. The proposed work would be a value addition to the gold standard by incorporating an observer-independent framework for the associated molecular pathology

    Density of CD3+ and CD8+ cells in gingivo-buccal oral squamous cell carcinoma is associated with lymph node metastases and survival.

    No full text
    The tumor immune microenvironment is emerging as a critical player in predicting cancer prognosis and response to therapies. However, the prognostic value of tumor-infiltrating immune cells in Gingivo-Buccal Oral Squamous Cell Carcinoma (GBOSCC) and their association with tumor size or lymph node metastases status require further elucidation. To study the relationship of tumor-infiltrating immune cells with tumor size (T stage) and lymph node metastases (N stages), we analyzed the density of tumor-infiltrating immune cells in archived, whole tumor resections from 94 patients. We characterized these sections by immune-histochemistry using 12 markers and enumerated tumor-infiltrating immune cells at the invasive margins (IM) and centers of tumors (CT). We observed that a higher density of CD3+ cells in the IM and CT was associated with smaller tumor size (T1-T2 stage). Fewer CD3+ cells was associated with larger tumor size (T3-T4 stage). High infiltration of CD3+and CD8+ cells in IM and CT as well as high CD4+ cell infiltrates in the IM was significantly associated with the absence of lymph node metastases. High infiltrates of CD3+ and CD8+ cells in CT was associated with significantly improved survival. Our results illustrate that the densities and spatial distribution of CD3+ and CD8+ cell infiltrates in primary GBOSCC tumors is predictive of disease progression and survival. Based on our findings, we recommend incorporating immune cell quantification in the TNM classification and routine histopathology reporting of GBOSCC. Immune cell quantification in CT and IM may help predict the efficacy of future therapies
    corecore