45 research outputs found

    Rational management approach to pure red cell aplasia

    Get PDF
    Pure red cell aplasia is an orphan disease, and as such lacks rationally established standard therapies. Most cases are idiopathic; a subset is antibody-mediated. There is overlap between idiopathic cases and those with T-cell large granular lymphocytic leukemia, hypogammaglobulinemia, and low-grade lymphomas. In each of the aforementioned, the pathogenetic mechanisms may involve autoreactive cytotoxic responses. We selected 62 uniformly diagnosed pure red cell aplasia patients and analyzed their pathophysiologic features and responsiveness to rationally applied first-line and salvage therapies in order to propose diagnostic and therapeutic algorithms that may be helpful in guiding the management of prospective patients, 52% of whom were idiopathic, while the others involved large granular lymphocytic leukemia, thymoma, and B-cell dyscrasia. T-cell-mediated responses ranged between a continuum from polyclonal to monoclonal (as seen in large granular lymphocytic leukemia). During a median observation period of 40 months, patients received a median of two different therapies to achieve remission. Frequently used therapy included calcineurin-inhibitors with a steroid taper yielding a first-line overall response rate of 76% (53/70). Oral cyclophosphamide showed activity, albeit lower than that produced by cyclosporine. Intravenous immunoglobulins were effective both in parvovirus patients and in hypogammaglobulinemia cases. In salvage settings, alemtuzumab is active, particularly in large granular lymphocytic leukemia-associated cases. Other potentially useful salvage options include rituximab, anti-thymocyte globulin and bortezomib. The workup of acquired pure red cell aplasia should include investigations of common pathological associations. Most effective therapies are directed against T-cell-mediated immunity, and therapeutic choices need to account for associated conditions that may help in choosing alternative salvage agents, such as intravenous immunoglobulin, alemtuzumab and bortezomib

    Predictors of vascular disease in myelodysplastic syndromes

    No full text
    Abstract The escalating link between somatic mutations commonly seen in myelodysplastic syndromes (MDS) and atherosclerotic vascular disease has increased the interest in management and associations of these conditions. We present a retrospective study examining clinical and molecular variables associated with vascular disease in patients with MDS. This study included a comprehensive evaluation of 236 patients with MDS. Our study has multiple findings. Mutations in ASXL1 correlated with increased risk of vascular disease for the entire cohort (P = .013). Though this has been replicated in other studies, there are no guidelines at this time for preventing vascular events in these patients. Our study also showed that lower ferritin levels may be linked to increased vascular events (P = .043), therefore the optimal use of supportive red blood cell transfusions in patients with MDS and the overall impact of inflammatory markers such as erythrocyte sedimentation rate and c‐reactive protein should be re‐addressed. Furthermore, our study showed that patients with Trisomy 8 in the low‐risk MDS cohort (based on IPSS‐R scores) were protected from vascular events (P = .036). Our findings of lower ferritin being linked with increased risk of vascular events as well as patients with Trisomy 8 being protected from vascular events may impact patient care. There do not appear to be any prior studies with these findings. In addition, given the connection between MDS and atherosclerotic vascular disease, we believe guideline‐based management of cardiac risk factors among MDS patients may improve overall outcomes. Further studies with larger patient cohorts are needed to further investigate these findings

    Genetic alterations of the cohesin complex genes in myeloid malignancies

    No full text
    Somatic cohesin mutations have been reported in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). To account for the morphologic and cytogenetic diversity of these neoplasms, a well-annotated cohort of 1060 patients with myeloid malignancies including MDS (n = 386), myeloproliferative neoplasms (MPNs) (n = 55), MDS/MPNs (n = 169), and AML (n = 450) were analyzed for cohesin gene mutational status, gene expression, and therapeutic and survival outcomes. Somatic cohesin defects were detected in 12% of patients with myeloid malignancies, whereas low expression of these genes was present in an additional 15% of patients. Mutations of cohesin genes were mutually exclusive and mostly resulted in predicted loss of function. Patients with low cohesin gene expression showed similar expression signatures as those with somatic cohesin mutations. Cross-sectional deep-sequencing analysis for clonal hierarchy demonstrated STAG2, SMC3, and RAD21 mutations to be ancestral in 18%, 18%, and 47% of cases, respectively, and each expanded to clonal dominance concordant with disease transformation. Cohesin mutations were significantly associated with RUNX1, Ras-family oncogenes, and BCOR and ASXL1 mutations and were most prevalent in high-risk MDS and secondary AML. Cohesin defects were associated with poor overall survival (27.2 vs 40 months; P = .023), especially in STAG2 mutant MDS patients surviving >12 months (median survival 35 vs 50 months; P = .017)
    corecore