2,182 research outputs found
LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements
The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described
Nurse rock microclimates significantly buffer exposure to freezing T temperature and moderate summer temperature
Nurse tree canopies mitigate exposure to freezing temperatures that could result in injury or mortality to the saguaro cactus (Carnegiea gigantea). Abiotic objects have been hypothesized to provide similar beneficial microclimates. We used data loggers at 11 nurse rock sites to record daily daytime summer maximum and winter nighttime minimum temperatures at Saguaro National Park, Arizona, to examine the effectiveness of rocks to moderate seasonal temperature extremes in the microclimate. Temperatures at rock sites averaged 2 °C warmer than exposed open control sites in winter. We found that the efficiency of rocks to act as insulators significantly increased as temperature at control sites decreased, consistent with studies of tree canopies, and that the insulation effect lasted throughout the night. In summer, rocks reduced exposure to maximum temperatures but did not offer significantly more cooling at higher temperatures. Our results suggest that the protection from freezing temperature offered by rocks in winter is more ecologically beneficial to the saguaro than extreme temperature amelioration during summer in the cold-limited frontiers of the speciesâ range
Closed forms and multi-moment maps
We extend the notion of multi-moment map to geometries defined by closed
forms of arbitrary degree. We give fundamental existence and uniqueness results
and discuss a number of essential examples, including geometries related to
special holonomy. For forms of degree four, multi-moment maps are guaranteed to
exist and are unique when the symmetry group is (3,4)-trivial, meaning that the
group is connected and the third and fourth Lie algebra Betti numbers vanish.
We give a structural description of some classes of (3,4)-trivial algebras and
provide a number of examples.Comment: 36 page
Mammalian ANP32A and ANP32B proteins drive differential polymerase adaptations in avian influenza virus
ANP32 proteins, which act as influenza polymerase cofactors, vary between birds and mammals. In mammals, ANP32A and ANP32B have been reported to serve essential but redundant roles to support influenza polymerase activity. The well-known mammalian adaptation PB2-E627K enables influenza polymerase to use mammalian ANP32 proteins. However, some mammalian-adapted influenza viruses do not harbor this substitution. Here, we show that alternative PB2 adaptations, Q591R and D701N, also allow influenza polymerase to use mammalian ANP32 proteins, whereas other PB2 mutations, G158E, T271A, and D740N, increase polymerase activity in the presence of avian ANP32 proteins as well. Furthermore, PB2-E627K strongly favors use of mammalian ANP32B proteins, whereas D701N shows no such bias. Accordingly, PB2-E627K adaptation emerges in species with strong pro-viral ANP32B proteins, such as humans and mice, while D701N is more commonly seen in isolates from swine, dogs, and horses, where ANP32A proteins are the preferred cofactor. Using an experimental evolution approach, we show that the passage of viruses containing avian polymerases in human cells drove acquisition of PB2-E627K, but not in the absence of ANP32B. Finally, we show that the strong pro-viral support of ANP32B for PB2-E627K maps to the low-complexity acidic region (LCAR) tail of ANP32B. IMPORTANCE Influenza viruses naturally reside in wild aquatic birds. However, the high mutation rate of influenza viruses allows them to rapidly and frequently adapt to new hosts, including mammals. Viruses that succeed in these zoonotic jumps pose a pandemic threat whereby the virus adapts sufficiently to efficiently transmit human-to-human. The influenza virus polymerase is central to viral replication and restriction of polymerase activity is a major barrier to species jumps. ANP32 proteins are essential for influenza polymerase activity. In this study, we describe how avian influenza viruses can adapt in several different ways to use mammalian ANP32 proteins. We further show that differences between mammalian ANP32 proteins can select different adaptive changes and are responsible for some of the typical mutations that arise in mammalian-adapted influenza polymerases. These different adaptive mutations may determine the relative zoonotic potential of influenza viruses and thus help assess their pandemic risk
Impact of previous hepatitis B infection on the clinical outcomes from chronic hepatitis C? A population-level analysis
Chronic coinfection with hepatitis C virus (HCV) and hepatitis B virus (HBV) is associated with adverse liver outcomes. The clinical impact of previous HBV infection on liver disease in HCV infection is unknown. We aimed at determining any association of previous HBV infection with liver outcomes using antibodies to the hepatitis B core antigen (HBcAb) positivity as a marker of exposure. The Scottish Hepatitis C Clinical Database containing data for all patients attending HCV clinics in participating health boards was linked to the HBV diagnostic registry and mortality data from Information Services Division, Scotland. Survival analyses with competing risks were constructed for time from the first appointment to decompensated cirrhosis, hepatocellular carcinoma (HCC) and liverârelated mortality. Records of 8513 chronic HCV patients were included in the analyses (87 HBcAb positive and HBV surface antigen [HBsAg] positive, 1577 HBcAb positive and HBsAg negative, and 6849 HBcAb negative). Multivariate causeâspecific proportional hazards models showed previous HBV infection (HBcAb positive and HBsAg negative) significantly increased the risks of decompensated cirrhosis (hazard ratio [HR]: 1.29, 95% CI: 1.01â1.65) and HCC (HR: 1.64, 95% CI: 1.09â2.49), but not liverârelated death (HR: 1.02, 95% CI: 0.80â1.30). This is the largest study to date showing an association between previous HBV infection and certain adverse liver outcomes in HCV infection. Our analyses add significantly to evidence which suggests that HBV infection adversely affects liver health despite apparent clearance. This has important implications for HBV vaccination policy and indications for prioritization of HCV therapy
The governance of formal universityâindustry interactions: understanding the rationales for alternative models
This article develops a conceptual framework to explain the economic rationale underpinning the choice of different modes of governance of formal universityâindustry interactions: personal contractual interactions, where the contract regulating the collaboration involves a firm and an individual academic researcher, and institutional interactions, where the relationship between the firm and the academic is mediated by the university. Although institutional interactions, for numerous reasons, have become more important, both governance modes are currently being implemented. We would argue that they have some important specificities that need to be understood if universityâindustry knowledge transfer is to be managed effectively and efficiently
- âŠ