39 research outputs found

    Computational Analysis of Heat Dissipation Strategies in Li-Ion Battery System Using Aluminium 7075 and Aluminium 6061

    Get PDF
    This study examines the thermal behaviour of batteries by doing a computational fluid dynamics (CFD) analysis on them using ANSYS. The analysis focuses on various heat sink configurations, including situations without heat sinks as well as those with aluminium alloys 7075 and 6061 of varying thicknesses. The purpose of this study is to determine how effective various setups are in preventing thermal runaway and maintaining temperature rises that are acceptable within predetermined parameters. The findings demonstrate that thicker heat sinks are more effective in improving heat dissipation and the overall performance of battery cooling systems. The comparisons made between the various materials and thicknesses provide insights into the most effective design for heat management systems. In the end, this research contributes to enhanced battery safety, performance, and longevity. Additionally, it serves as a vital reference for engineers and researchers working to advance energy storage technology across a variety of applications

    Significance of tissue microbiopsies in fine needle aspiration cytology

    Get PDF
    Background: Fine Needle Aspiration Cytology smears prepared through conventional method, often contain well preserved viable tissue fragments which are intact (Tissue Micro biopsies). They will provide information on the tissue architecture and contribute to the tumour ontogeny.Methods: A prospective study of significance of tissue micro biopsies in FNAC were studied and interpreted in the Cytopathology laboratory of Department of Pathology, Tirunelveli Medical College, Tirunelveli. 100 cases with clinically palpable Swellings were studied.Results: Out of 100 cases, 82% of cases were coming under the category of conventional FNAC, 10% of the cases were USG guided and 8% were falling under CT guided FNAC. The organs with highest yield of micro biopsies were lymph nodes 34 cases (34%) followed by breast 24 cases, thyroid 11 cases, lung 8 cases, salivary gland 7 cases, liver and bone and soft tissue 4 cases each, abdominal mass 3cases, pancreas 2 cases, and single case each of ovary, spleen, anterior mediastinum. Of the total 100 cases, 56% of the cases were malignant and 44% of the cases were benign. Among the 56 malignant tumours 41(73.2%) cases were primary tumours and 15cases (26.8%) were metastatic tumours.Conclusions: FNA smears containing micro biopsies help in diagnosis, typing of tumour and predicting possible primary sites in cases of metastatic tumours which were not possible by cytology alone. Hence, this technique can be used to increase the diagnostic accuracy of FNAC if put into practice

    Experiences in Implementing an Energy-Driven Task Scheduler in RT-Linux

    Get PDF
    Dynamic voltage scaling (DVS) is being increasingly used for power management in embedded systems. Energy is a scarce resource in embedded real-time systems and energy consumption must be carefully balanced against realtime responsiveness. We describe our experiences in implementing an energy driven task scheduler in RT-Linux. We attempt to minimize the energy consumed by a taskset while guaranteeing that all task deadlines are met. Our algorithm, which we call LEDF, follows a greedy approach and schedules as many tasks as possible at a low CPU speed in a power-aware manner. We present simulation results on energy savings using LEDF, and we validate our approach using the RT-Linux testbed on the AMD Athlon 4 processor. Power measurements taken on the testbed closely match the power estimates obtained using simulation. Our results show that DVS results in significant energy savings for practical real-life task sets. We also show that when CPU speeds are restricted to only a few discrete values, this approach saves more energy than currently existing methods

    RNA Interference and Nanotechnology: A Promising Alliance for Next Generation Cancer Therapeutics

    Get PDF
    Cancer is a significant health hazard of the 21st century, and GLOBOCAN predicts increasing cancer incidence in the coming decades. Though several conventional treatment modalities exist, most of them end up causing off-target and debilitating effects, and drug resistance acquisition. Advances in our understanding of tumor molecular biology offer alternative strategies for precise, robust, and potentially less toxic treatment paradigms for circumventing the disease at the cellular and molecular level. Several deregulated molecules associated with tumorigenesis have been developed as targets in RNA interference (RNAi) based cancer therapeutics. RNAi, a post-transcriptional gene regulation mechanism, has significantly gained attention because of its precise multi-targeted gene silencing. Although the RNAi approach is favorable, the direct administration of small oligonucleotides has not been fruitful because of their inherent lower half-lives and instability in the biological systems. Moreover, the lack of an appropriate delivery system to the primary site of the tumor that helps determine the potency of the drug and its reach, has limited the effective medical utilization of these bio-drugs. Nanotechnology, with its unique characteristics of enhanced permeation and better tumor-targeting efficiency, offers promising solutions owing to the various possibilities and amenability for modifications of the nanoparticles to augment cancer therapeutics. Nanoparticles could be made multimodal, by designing and synthesizing multiple desired functionalities, often resulting in unique and potentially applicable biological structures. A small number of Phase I clinical trials with systemically administered siRNA molecules conjugated with nanoparticles have been completed and the results are promising, indicating that, these new combinatorial therapies can successfully and safely be used to inhibit target genes in cancer patients to alleviate some of the disease burden. In this review, we highlight different types of nano-based delivery strategies for engineering Nano-RNAi-based bio drugs. Furthermore, we have highlighted the insights gained from current research that are entering the preclinical evaluation and information about initial clinical developments, shaping the future for next generation cancer therapeutics

    Build your own closed loop: Graph-based proof of concept in closed loop for autonomous networks

    Get PDF
    Next Generation Networks (NGNs) are expected to handle heterogeneous technologies, services, verticals and devices of increasing complexity. It is essential to fathom an innovative approach to automatically and efficiently manage NGNs to deliver an adequate end-to-end Quality of Experience (QoE) while reducing operational expenses. An Autonomous Network (AN) using a closed loop can self-monitor, self-evaluate and self-heal, making it a potential solution for managing the NGN dynamically. This study describes the major results of building a closed-loop Proof of Concept (PoC) for various AN use cases organized by the International Telecommunication Union Focus Group on Autonomous Networks (ITU FG-AN). The scope of this PoC includes the representation of closed-loop use cases in a graph format, the development of evolution/exploration mechanisms to create new closed loops based on the graph representations, and the implementation of a reference orchestrator to demonstrate the parsing and validation of the closed loops. The main conclusions and future directions are summarized here, including observations and limitations of the PoC

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an

    Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING: Bill & Melinda Gates Foundation

    Network Flow Techniques for Dynamic Voltage Scaling in Hard Real-Time Systems

    Full text link
    Energy consumption is an important performance parameter for portable and wireless embedded systems. However, energy consumption must be carefully balanced with real-time responsiveness in hard realtime systems. In this paper, we present two offline dynamic voltage scaling (DVS) schemes for dynamic power management in such systems. In the first method, we develop a generalized network flow (GNF) model for the uniprocessor DVS problem and solve it optimally using an efficient network flow algorithm. The proposed method outperforms existing DVS schemes for several popular embedded processors where the number of processor speeds is limited to a few values. The solutions for the GNF model provide theoretical lower bounds on energy consumption using DVS in hard real-time systems. We also describe a minimum-cost network flow model whose solutions are near-optimal. The minimum-cost models perform at par with competing methods for processor models with a large range of operating voltages, and better than them for processor models with a limited set of operating voltages
    corecore