35 research outputs found

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    Neoarchean arc magmatism and Paleoproterozoic granulite‐facies metamorphism in the Bhavani Suture Zone, South India

    No full text
    The Bhavani Suture Zone in the Southern Granulite Terrane marks the zone of amalgamation of the Neoarchean Nilgiri Block and the northwestern Madurai Block in southern India. Here, we report detailed petrological, geochemical, and geochronological data on the Mettupalayam mafic–ultramafic complex within this suture zone with a view to evaluate the tectonothermal history of the Bhavani Suture Zone and adjoining crustal blocks. The metamorphosed complex includes charnockite, hornblende‐biotite gneiss, mafic granulite, amphibolite, garnet‐bearing mafic granulite, and dioritic gneiss along with metamorphosed banded iron formation. The mafic granulite and the dioritic gneiss occur as concordant layers of varying thickness within the hornblende‐biotite gneiss. The salient geochemical features of the mafic granulite and the dioritic gneiss including the enrichment of large‐ion lithophile elements and depletion of high‐field‐strength elements suggest a subduction‐related arc magmatic setting. However, the amphibolites show MORB‐related affinity, suggesting its formation from a N‐MORB‐related source and their accretion together with the overlying banded iron formation. The peak metamorphic conditions of the garnet‐bearing mafic granulite were estimated using conventional geothermobarometers as 800–820 °C/8.5–9.2 kbar, which we further confirm through phase equilibrium modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) system. Magmatic zircons with high Th/U ratio from the amphibolite display a well‐defined discordia with an upper intercept age of 2,600 ± 38 Ma. Zircon grains from the dioritic gneiss show weighted mean 206Pb/207Pb age of 2,524 ± 6 Ma from concordant zircon spots and a comparable upper intercept age of 2,562 ± 34 Ma from discordant zircon spots, indicating protolith emplacement related to Neoarchean arc magmatism as inferred from our geochemical data. The thin overgrowth rims around the magmatic zircon grains in the amphibolite yielded an upper intercept age of 2,520 ± 20 Ma, which is comparable with the protolith crystallization age of the dioritic gneiss. Slightly younger weighted mean 207Pb/208Pb ages of 2,463 ± 27 Ma (from dioritic gneiss) and 2,422 ± 30 Ma (from amphibolite) are also obtained from the metamorphic zircon rims. These ages are correlated to the timing of high‐grade metamorphism associated with final collision of the Nilgiri Block and the northwestern Madurai Block. Similar Neoarchean–Paleoproterozoic magmatism and high‐grade metamorphism were reported from many localities south of the Dharwar Craton. Our study further confirms the previous tectonic model that envisages multiple subduction and collision of magmatic arcs and continental fragments towards the Dharwar Craton during the Archean–Paleoproterozoic transition.Sam Uthup, Toshiaki Tsunogae; V.J. Rajesh, M. Santosh, Yusuke Takamura, Yukiyasu Tsutsum
    corecore