99 research outputs found

    Search for the Rare Decay KL --> pi0 ee

    Full text link
    The KTeV/E799 experiment at Fermilab has searched for the rare kaon decay KL--> pi0ee. This mode is expected to have a significant CP violating component. The measurement of its branching ratio could support the Standard Model or could indicate the existence of new physics. This letter reports new results from the 1999-2000 data set. One event is observed with an expected background at 0.99 +/- 0.35 events. We set a limit on the branching ratio of 3.5 x 10^(-10) at the 90% confidence level. Combining the results with the dataset taken in 1997 yields the final KTeV result: BR(KL --> pi0 ee) < 2.8 x 10^(-10) at 90% CL.Comment: 4 pages, three figure

    Measurements of Direct CP Violation, CPT Symmetry, and Other Parameters in the Neutral Kaon System

    Full text link
    We present a series of measurements based on K -> pi+pi- and K -> pi0pi0 decays collected in 1996-1997 by the KTeV experiment (E832) at Fermilab. We compare these four K -> pipi decay rates to measure the direct CP violation parameter Re(e'/e) = (20.7 +- 2.8) x 10^-4. We also test CPT symmetry by measuring the relative phase between the CP violating and CP conserving decay amplitudes for K->pi+pi- (phi+-) and for K -> pi0pi0 (phi00). We find the difference between the relative phases to be Delta-phi = phi00 - phi+- = (+0.39 +- 0.50) degrees and the deviation of phi+- from the superweak phase to be phi+- - phi_SW =(+0.61 +- 1.19) degrees; both results are consistent with CPT symmetry. In addition, we present new measurements of the KL-KS mass difference and KS lifetime: Delta-m = (5261 +- 15) x 10^6 hbar/s and tauS = (89.65 +- 0.07) x 10^-12 s.Comment: Submitted to Phys. Rev. D, August 6, 2002; 37 pages, 32 figure

    Measurements Of The Decay Kl → E+e-ÎŒ+ÎŒ-

    Get PDF
    Several 132 KL → e+e- ÎŒ+ ÎŒ- events were observed from the 1997 and 1999 runs of the KTeV experiments, with an estimated background of 0.8 events. In the first measurement of the parameter α using this decay mode, it was found that α=-1.59±0.37. No evidence was found for CP-violating contributions to the KLÎł*Îł* interaction.9014141801/1141801/5Wolfenstein, L., (1983) Phys. Rev. Lett., 51, p. 1945Belanger, G., Geng, C.Q., (1991) Phys. Rev. D, 43, p. 140Buras, A.J., Fleischer, R., (1998) Advanced Ser. Direct. High Energy Phys., 15, p. 65Uy, Z.E.S., (1991) Phys. Rev. D, 43, p. 802D'Ambrosio, G., Isidori, G., PortolĂšs, J., (1998) Phys. Lett. B, 423, p. 385Alavi-Harati, A., (2001) Phys. Rev. Lett., 87, p. 71801. , KTeV CollaborationAlavi-Harati, A., (2001) Phys. Rev. Lett., 86, p. 5425. , KTeV CollaborationUy, Z.E.S., (2002) Eur. Phys. J. C, 23, p. 113Alavi-Harati, A., (2001) Phys. Rev. Lett., 87, p. 111802. , KTeV CollaborationHamm, J.C., (2002), Ph.D. thesis, The University of Arizona(Fermilab Report No. fERMILAB-THESIS-2002-09)Alavi-Harati, A., (1999) Phys. Rev. Lett., 83, p. 922. , KTeV CollaborationAlavi-Harati, A., (2000) Phys. Rev. D, 61, p. 072006. , KTeV CollaborationBrown, C., (1996) Nucl. Instrum. Methods Phys. Res., Sect. A, 369, p. 248Quinn, G.B., (2000), Ph.D. thesis, The University of ChicagoBarker, A.R., Huang, H., Toale, P.A., Engle, J., hep-ph/0210174Bergström, L., MassĂł, E., Singer, P., (1983) Phys. Lett., 131 B, p. 229Fanti, V., (1999) Phys. Lett. B, 458, p. 553. , NA48 Collaboratio

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations

    Measurement of the CKM angle γγ in B±→DK±B^\pm\to D K^\pm and B±→Dπ±B^\pm \to D π^\pm decays with D→KS0h+h−D \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±→DK±B^\pm\to D K^\pm and B±→Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+π−K_{\mathrm S}\pi^+\pi^- and KSK+K−K_{\mathrm S}K^+K^- (commonly denoted KSh+h−K_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle Îł\gamma. Using a data sample corresponding to an integrated luminosity of 9 fb−19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13 TeV13\,\text{TeV} with the LHCb experiment, Îł\gamma is measured to be (68.7−5.1+5.2)∘\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, ÎŽBDK\delta_B^{DK}, and ÎŽBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→Ό + ÎŒ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→Ό + ÎŒ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
    • 

    corecore