29 research outputs found
The incursion, persistence and spread of peste des petits ruminants in Tanzania: Epidemiological patterns and predictions
Peste des petits ruminants virus, which causes a severe disease in sheep and goats, has only recently been officially declared to be present in Tanzania. An epidemiological study was carried out between September 2008 and October 2010 to investigate the incursion, persistence and spread of the virus in Tanzania. The investigation involved serosurveillance, outbreak investigation and computation of epidemiological indices such as the effective reproductive number, persistence and the threshold level for vaccination. Field and molecular epidemiological techniques were applied to isolate, characterise and trace the origin of the virus in Tanzania. A total of 2182 serum samples from goats and 1296 from sheep from 79 villages across 12 districts were investigated. Village-level prevalence of infection was variable (0.00% – 88.00%) and was higher in pastoral than in agro-pastoral villages. The overall antibody response to the virus was 22.10% (CI 95% = 20.72% – 23.48%). About 68.00% and 73.00% of seropositive goats and sheep, respectively, did not show clinical signs. The proportion of seropositive animals differed significantly (p ≤ 0.001) between age groups, sex and farming practices. Real-time polymerase chain reaction results showed that the isolated strains belong to lineage III, whose origin is in East Africa and the Middle East. This indicates that one of the northern neighbouring countries is most likely the source of infection. The computed overall effective reproductive number, the threshold level of vaccination necessary to eradicate the disease and persistence were 4.75% and 98.00%, respectively. These estimates indicate that achieving elimination of the peste des petits ruminants virus from pastoral flocks will require significant effort and development of highly effective intervention tools
Economic burden of livestock disease and drought in Northern Tanzania
Livestock-dependent communities face considerable livestock disease and drought risk, which can impact herd value, income and consumption. This paper summarizes economic data collected from 404 households in Arusha and Manyara regions of Northern Tanzania in 2016. They provide estimates for (i) herd loss due to disease and drought as a fraction of herd value and income, (ii) the relative risk of disease and drought in small versus large ruminants and (iii) the relationship between livestock disease outcomes and household expenditures. We find that disease and drought losses comprise 10 to 4% of sheep, cattle and goat herd value, and amount to an estimated 62.1% of household income. The drought and disease risk ratios for small versus large ruminants indicate that small stock face higher disease risk, while large ruminants are affected more by drought. Furthermore, cattle abortions are negatively related to schooling expenditure and positively associated with increases in off-farm food expenditure related to livestock management, presumably through increased investments in prevention and therapy. These results suggest that climatic variability and livestock diseases are an important source of economic vulnerability and reducing this burden may help alleviate poverty in livestock-dependent communities
Peste des petits ruminants virus transmission scaling and husbandry practices that contribute to increased transmission risk: an investigation among sheep, goats, and cattle in Northern Tanzania
Peste des petits ruminants virus (PPRV) causes an infectious disease of high morbidity and mortality among sheep and goats which impacts millions of livestock keepers globally. PPRV transmission risk varies by production system, but a deeper understanding of how transmission scales in these systems and which husbandry practices impact risk is needed. To investigate transmission scaling and husbandry practice-associated risk, this study combined 395 household questionnaires with over 7115 cross-sectional serosurvey samples collected in Tanzania among agropastoral and pastoral households managing sheep, goats, or cattle (most managed all three, n = 284, 71.9%). Although self-reported compound-level herd size was significantly larger in pastoral than agropastoral households, the data show no evidence that household herd force of infection (FOI, per capita infection rate of susceptible hosts) increased with herd size. Seroprevalence and FOI patterns observed at the sub-village level showed significant spatial variation in FOI. Univariate analyses showed that household herd FOI was significantly higher when households reported seasonal grazing camp attendance, cattle or goat introduction to the compound, death, sale, or giving away of animals in the past 12 months, when cattle were grazed separately from sheep and goats, and when the household also managed dogs or donkeys. Multivariable analyses revealed that species, production system type, and goat or sheep introduction or seasonal grazing camp attendance, cattle or goat death or sales, or goats given away in the past 12 months significantly increased odds of seroconversion, whereas managing pigs or cattle attending seasonal grazing camps had significantly lower odds of seroconversion. Further research should investigate specific husbandry practices across production systems in other countries and in systems that include additional atypical host species to broaden understanding of PPRV transmission
Dramatic decreases of malaria transmission intensities in Ifakara, south-eastern Tanzania since early 2000s.
BACKGROUND: Ongoing epidemiological transitions across Africa are particularly evident in fast-growing towns, such as Ifakara in the Kilombero valley, south-eastern Tanzania. This town and its environs (population ~ 70,000) historically experienced moderate to high malaria transmission, mediated mostly by Anopheles gambiae and Anopheles funestus. In early 2000s, malaria transmission [Plasmodium falciparum entomological inoculation rate (PfEIR)] was estimated at ~ 30 infectious bites/person/year (ib/p/yr). This study assessed the PfEIR after 15 years, during which there had been rapid urbanization and expanded use of insecticide-treated nets (ITNs). METHODS: Randomly-selected 110 households were sampled across Ifakara town and four adjacent wards. Mosquitoes were trapped nightly or monthly (June.2015-May.2016) using CDC-light-traps indoors, Suna® traps outdoors and human landing catches (HLC) indoors and outdoors. All Anopheles mosquitoes were morphologically identified and analysed by ELISA for Plasmodium circumsporozoite proteins. Mosquito blood meals were identified using ELISA, and sub-samples of An. gambiae and An. funestus examined by PCR to distinguish morphologically-similar siblings. Insecticide resistance was assessed using WHO-susceptibility assays, and some Anopheles were dissected to examine ovariole tracheoles for parity. RESULTS: After 3572 trap-nights, one Plasmodium-infected Anopheles was found (an An. funestus caught outdoors in Katindiuka-ward by HLC), resulting in overall PfEIR of 0.102 ib/p/yr. Nearly 80% of malaria vectors were from Katindiuka and Mlabani wards. Anopheles gambiae densities were higher outdoors (64%) than indoors (36%), but no such difference was observed for An. funestus. All An. funestus and 75% of An. gambiae dissected were parous. Anopheles gambiae complex consisted entirely of Anopheles arabiensis, while An. funestus included 84.2% An. funestus s.s., 4.5% Anopheles rivulorum, 1.4% Anopheles leesoni and 9.9% with unamplified-DNA. Anopheles gambiae were susceptible to bendiocarb and malathion, but resistant to pyrethroids, DDT and pirimiphos-methyl. Most houses had brick walls and/or iron roofs (> 90%), and 52% had screened windows. CONCLUSION: Malaria transmission in Ifakara has decreased by > 99% since early-2000s, reaching levels nearly undetectable with current entomological methods. These declines are likely associated with ITNs use, urbanization and improved housing. Remaining risk is now mostly in peri-urban wards, but concerted efforts could further decrease local transmission. Parasitological surveys are required to assess actual prevalence, incidence and importation rates
Safety, immunogenicity and antibody persistence of Rift Valley fever Virus clone 13 vaccine in sheep, goats and cattle in Tanzania
BACKGROUND : Vaccination is considered to be the best approach to control Rift Valley
fever (RVF) in animals and consequently in humans. This study assessed the efficacy and
safety of the RVF virus (RVFV) Clone 13 vaccine under field conditions.
METHODOLOGY : A vaccine trial was conducted in sheep (230), goats (230), and cattle
(140) in Ngorongoro district, Tanzania. Half of each of the animal species were vaccinated
and the other half received the placebo. Animals were clinicallymonitored and bled before
vaccination and at days 15, 30, 60, 180 and 360 (+/– 10) post-vaccination to measure
Immunoglobulin M (IgM) and IgG antibody responses to RVFV. Survival analysis was
conducted using cox-proportional hazard regression model to measure the time until
an event of interest had occurred and to compare the cumulative proportion of events
over time.
RESULTS : Of 600 animals included in the study, 120 animals were lost during the study,
leaving a total of 480 (243 in the vaccinated group and 237 in the control group) for
complete follow-up sampling. There was no adverse reaction reported at the injection site
of the vaccine/placebo in all animals. Abortions, deaths, or body temperature variations
were not associated with vaccination (p > 0.05). By day 15 post-inoculation, the IgG
seroconversion in vaccinated goats, cattle and sheep was 27.0% (n = 115), 20.0% (n
= 70) and 10.4% (n = 115), respectively. By day 30 post-inoculation, it was 75.0% (n
= 113), 74.1% (n = 112) and 57.1% (n = 70) in vaccinated sheep, goats and cattle,
respectively. By day 60 post-inoculation, IgG seroconversion in sheep, goats and cattle
was 88.1% (n = 109), 84.3% (n = 108) and 64.60% (n = 65), respectively. By day 180, the IgG seroconversion in sheep, goats and cattle was 88.0% (n = 108), 83.8% (n =
105) and 66.1% (n = 62), respectively. By day 360, the IgG seroconversion in sheep,
goats and cattle was 87.2% (n = 94), 85.6% (n = 90) and 66.1% (n = 59), respectively.
Only five animals from the vaccinated group were RVFV IgM positive, which included four
sheep and a goat.
CONCLUSION : RVFV Clone 13 vaccine was well tolerated by sheep, goats, and cattle.
The vaccine induced detectable, but variable levels of IgG responses, and of different
duration. The vaccine is considered safe, with high immunogenicity in sheep and goats
and moderate in cattle.The Bill & Melinda Gates Foundation and United Kingdom (UK) aid from the UK Government through the Global Alliance for Livestock Veterinary Medicines.https://www.frontiersin.org/journals/veterinary-science#am2022Medical Virolog
Observing the distribution of mosquito bites on humans to inform personal protection measures against malaria and dengue vectors
Background Understanding mosquito biting behaviours is important for designing and evaluating protection methods against nuisance biting and mosquito-borne diseases (e.g. dengue, malaria and zika). We investigated the preferred biting sites by Aedes aegypti and Anopheles arabiensis on adult volunteers in standing or sleeping positions; and estimated the theoretical protection limits affordable from protective clothing or repellent-treated footwear. Methods Adult volunteers dressed in shorts and t-shirts were exposed to infection-free laboratory-reared mosquitoes inside screened chambers from 6am to noon (for day-biting Ae. aegypti) or 6pm to midnight (night-biting An. arabiensis). Attempted bites on different body parts were recorded. Comparative observations were made on same volunteers while wearing sandals treated with transfluthrin, a vapour-phase pyrethroid that kills and repels mosquitoes. Results An. arabiensis bites were mainly on the lower limbs of standing volunteers (95.9% of bites below the knees) but evenly-distributed over all exposed body surfaces when the volunteers were on sleeping positions (only 28.8% bites below knees). Ae. aegypti bites were slightly concentrated on lower limbs of standing volunteers (47.7% below knees), but evenly-distributed on sleeping volunteers (23.3% below knees). Wearing protective clothing that leave only hands and head uncovered (e.g. socks + trousers + long-sleeved shirts) could theoretically prevent 78–83% of bites during sleeping, and at least 90% of bites during non-sleeping hours. If the feet are also exposed, protection declines to as low as 36.3% against Anopheles. The experiments showed that transfluthrin-treated sandals reduced An. arabiensis by 54–86% and Ae. aegypti by 32–39%, but did not change overall distributions of bites. Conclusion Biting by An. arabiensis and Ae. aegypti occur mainly on the lower limbs, though this proclivity is less pronounced in the Aedes species. However, when hosts are on sleeping positions, biting by both species is more evenly-distributed over the exposed body surfaces. High personal protection might be achieved by simply wearing long-sleeved clothing, though protection against Anopheles particularly requires covering of feet and lower legs. The transfluthrin-treated footwear can reduce biting risk, especially by An. arabiensis. These findings could inform the design and use of personal protection tools (both insecticidal and non-insecticidal) against mosquitoes and mosquito-borne diseases
Meat safety in Tanzania’s value chain : experiences, explanations and expectations in butcheries and eateries
This research was funded by the Biotechnology and Biological Sciences Research Council, the Department for International Development, the Economic and Social Research Council, the Medical Research Council, the Natural Environment Research Council, and the Defence Science and Technology Laboratory, under the UK Zoonoses and Emerging Livestock Systems Initiative (Grant Numbers BB/L017679/1 and BB/L018926/1).Urbanisation is associated with changes in consumption patterns and food production processes. These patterns and processes can increase or decrease the risks of outbreaks of foodborne diseases and are generally accompanied by changes in food safety policies and regulations about food handling. This affects consumers, as well as people economically engaged in the food value chain. This study looks at Tanzania’s red meat value chain—which in its totality involves about one third of the population—and focuses on the knowledge, attitudes and reported practices of operators of butcheries and eateries with regards to meat safety in an urban and in a rural environment. We interviewed 64 operators about their experiences with foodborne diseases and their explanations and expectations around meat safety, with a particular emphasis on how they understood their own actions regarding food safety risks vis-à -vis regulations. We found operators of eateries emphasising their own agency in keeping meat safe, whereas operators of butcheries—whose products are more closely inspected—relied more on official inspections. Looking towards meat safety in the future, interviewees in rural areas were, relative to their urban counterparts, more optimistic, which we attribute to rural operators’ shorter and relatively unmediated value chains.Publisher PDFPeer reviewe
Prevalence of Campylobacter and Salmonella in African food animals and meat: a systematic review and meta-analysis
Background:
Campylobacter and Salmonella, particularly non-typhoidal Salmonella, are important bacterial enteric pathogens of humans which are often carried asymptomatically in animal reservoirs. Bacterial foodborne infections, including those derived from meat, are associated with illness and death globally but the burden is disproportionately high in Africa. Commercial meat production is increasing and intensifying in many African countries, creating opportunities and threats for food safety.
Methods:
Following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, we searched six databases for English language studies published through June 2016, that reported Campylobacter or Salmonella carriage or infection prevalence in food animals and contamination prevalence in food animal products from African countries. A random effects meta-analysis and multivariable logistic regression were used to estimate the species-specific prevalence of Salmonella and Campylobacter and assess relationships between sample type and region and the detection or isolation of either pathogen.
Results:
Seventy-three studies reporting Campylobacter and 187 studies reporting Salmonella across 27 African countries were represented. Adjusted prevalence calculations estimate Campylobacter detection in 37.7% (95% CI 31.6–44.3) of 11,828 poultry samples; 24.6% (95% CI 18.0–32.7) of 1975 pig samples; 17.8% (95% CI 12.6–24.5) of 2907 goat samples; 12.6% (95% CI 8.4–18.5) of 2382 sheep samples; and 12.3% (95% CI 9.5–15.8) of 6545 cattle samples. Salmonella were detected in 13.9% (95% CI 11.7–16.4) of 25,430 poultry samples; 13.1% (95% CI 9.3–18.3) of 5467 pig samples; 9.3% (95% CI 7.2–12.1) of 2988 camel samples; 5.3% (95% CI 4.0–6.8) of 72,292 cattle samples; 4.8% (95% CI 3.6–6.3) of 11,335 sheep samples; and 3.4% (95% CI 2.2–5.2) of 4904 goat samples. ‘External’ samples (e.g. hide, feathers) were significantly more likely to be contaminated by both pathogens than ‘gut’ (e.g. faeces, cloaca) while meat and organs were significantly less likely to be contaminated than gut samples.
Conclusions:
This study demonstrated widespread prevalence of Campylobacter species and Salmonella serovars in African food animals and meat, particularly in samples of poultry and pig origin. Source attribution studies could help ascertain which food animals are contributing to human campylobacteriosis and salmonellosis and direct potential food safety interventions
The sero-epidemiology of Neospora caninum in cattle in northern Tanzania
Neospora caninum is a protozoan intracellular parasite of animals with a global distribution. Dogs act as definitive hosts, with infection in cattle leading to reproductive losses. Neosporosis can be a major source of income loss for livestock keepers, but its impacts in sub-Saharan Africa are mostly unknown. This study aimed to estimate the seroprevalence and identify risk factors for N. caninum infection in cattle in northern Tanzania, and to link herd-level exposure to reproductive losses. Serum samples from 3,015 cattle were collected from 380 households in 20 villages between February and December 2016. Questionnaire data were collected from 360 of these households. Household coordinates were used to extract satellite derived environmental data from open-access sources. Sera were tested for the presence of N. caninum antibodies using an indirect ELISA. Risk factors for individual-level seropositivity were identified with logistic regression using Bayesian model averaging (BMA). The relationship between herd-level seroprevalence and abortion rates was assessed using negative binomial regression. The seroprevalence of N. caninum exposure after adjustment for diagnostic test performance was 21.5% [95% Credibility Interval (CrI) 17.9–25.4]. The most important predictors of seropositivity selected by BMA were age greater than 18 months [Odds ratio (OR) = 2.17, 95% CrI 1.45–3.26], the local cattle population density (OR = 0.69, 95% CrI 0.41–1.00), household use of restricted grazing (OR = 0.72, 95% CrI 0.25–1.16), and an increasing percentage cover of shrub or forest land in the environment surrounding a household (OR = 1.37, 1.00–2.14). There was a positive relationship between herd-level N. caninum seroprevalence and the reported within-herd abortion rate (Incidence Rate Ratio = 1.03, 95% CrI 1.00–1.06). Our findings suggest N. caninum is likely to be an important cause of abortion in cattle in Tanzania. Management practices, such as restricted grazing, are likely to reduce the risk of infection and suggest contamination of communal grazing areas may be important for transmission. Evidence for a relationship between livestock seropositivity and shrub and forest habitats raises questions about a potential role for wildlife in the epidemiology of N. caninum in Tanzania
Detection of malaria parasites in dried human blood spots using mid-infrared spectroscopy and logistic regression analysis
Background:
Epidemiological surveys of malaria currently rely on microscopy, polymerase chain reaction assays (PCR) or rapid diagnostic test kits for Plasmodium infections (RDTs). This study investigated whether mid-infrared (MIR) spectroscopy coupled with supervised machine learning could constitute an alternative method for rapid malaria screening, directly from dried human blood spots.
Methods:
Filter papers containing dried blood spots (DBS) were obtained from a cross-sectional malaria survey in 12 wards in southeastern Tanzania in 2018/19. The DBS were scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra in the range 4000 cm−1 to 500 cm−1. The spectra were cleaned to compensate for atmospheric water vapour and CO2 interference bands and used to train different classification algorithms to distinguish between malaria-positive and malaria-negative DBS papers based on PCR test results as reference. The analysis considered 296 individuals, including 123 PCR-confirmed malaria positives and 173 negatives. Model training was done using 80% of the dataset, after which the best-fitting model was optimized by bootstrapping of 80/20 train/test-stratified splits. The trained models were evaluated by predicting Plasmodium falciparum positivity in the 20% validation set of DBS.
Results:
Logistic regression was the best-performing model. Considering PCR as reference, the models attained overall accuracies of 92% for predicting P. falciparum infections (specificity = 91.7%; sensitivity = 92.8%) and 85% for predicting mixed infections of P. falciparum and Plasmodium ovale (specificity = 85%, sensitivity = 85%) in the field-collected specimen.
Conclusion:
These results demonstrate that mid-infrared spectroscopy coupled with supervised machine learning (MIR-ML) could be used to screen for malaria parasites in human DBS. The approach could have potential for rapid and high-throughput screening of Plasmodium in both non-clinical settings (e.g., field surveys) and clinical settings (diagnosis to aid case management). However, before the approach can be used, we need additional field validation in other study sites with different parasite populations, and in-depth evaluation of the biological basis of the MIR signals. Improving the classification algorithms, and model training on larger datasets could also improve specificity and sensitivity. The MIR-ML spectroscopy system is physically robust, low-cost, and requires minimum maintenance