129 research outputs found

    Controlling skyrmion bubble confinement by dipolar interactions

    Get PDF
    Large skyrmion bubbles in confined geometries of various sizes and shapes are investigated, typically in the range of several micrometers. Two fundamentally different cases are studied to address the role of dipole-dipole interactions: (I) when there is no magnetic material present outside the small geometries and (II) when the geometries are embedded in films with a uniform magnetization. It is found that the preferential position of the skyrmion bubbles can be controlled by the geometrical shape, which turns out to be a stronger influence than local variations in material parameters. In addition, independent switching of the direction of the magnetization outside the small geometries can be used to further manipulate these preferential positions, in particular with respect to the edges. We show by numerical calculations that the observed interactions between the skyrmion bubbles and structure edge including the overall positioning of the bubbles are fully controlled by dipole-dipole interactions

    Tunable chiral spin texture in magnetic domain-walls

    Get PDF
    Magnetic domain-walls (DWs) with a preferred chirality exhibit very efficient current-driven motion. Since structural inversion asymmetry (SIA) is required for their stability, the observation of chiral domain walls in highly symmetric Pt/Co/Pt is intriguing. Here, we tune the layer asymmetry in this system and observe, by current-assisted DW depinning experiments, a small chiral field which sensitively changes. Moreover, we convincingly link the observed efficiency of DW motion to the DW texture, using DW resistance as a direct probe for the internal orientation of the DW under the influence of in-plane fields. The very delicate effect of capping layer thickness on the chiral field allows for its accurate control, which is important in designing novel materials for optimal spin-orbit-torque-driven DW motion.Comment: 12 pages, 5 figure

    Optimizing propagating spin wave spectroscopy

    Get PDF
    The frequency difference between two oppositely propagating spin waves can be used to probe several interesting magnetic properties, such as the Dzyaloshinkii-Moriya interaction (DMI). Propagating spin wave spectroscopy is a technique that is very sensitive to this frequency difference. Here we show several elements that are important to optimize devices for such a measurement. We demonstrate that for wide magnetic strips there is a need for de-embedding. Additionally, for these wide strips there is a large parasitic antenna-antenna coupling that obfuscates any spin wave transmission signal, which is remedied by moving to smaller strips. The conventional antenna design excites spin waves with two different wave vectors. As the magnetic layers become thinner, the resulting resonances move closer together and become very difficult to disentangle. In the last part we therefore propose and verify a new antenna design that excites spin waves with only one wave vector. We suggest to use this antenna design to measure the DMI in thin magnetic layers.Comment: 12 pages, 4 figure

    Anomalous direction for skyrmion bubble motion

    Get PDF
    Magnetic skyrmions are localized topological excitations that behave as particles and can be mobile, with great potential for novel data storage devices. In this work, the current-induced dynamics of large skyrmion bubbles is studied. When skyrmion motion in the direction opposite to the electron flow is observed, this is usually interpreted as a perpendicular spin current generated by the spin Hall effect exerting a torque on the chiral N\'{e}el skyrmion. By designing samples in which the direction of the net generated spin current can be carefully controlled, we surprisingly show that skyrmion motion is always against the electron flow, irrespective of the net vertical spin-current direction. We find that a negative bulk spin-transfer torque is the most plausible explanation for the observed results, which is qualitatively justified by a simple model that captures the essential behaviour. These findings demonstrate that claims about the skyrmion chirality based on their current-induced motion should be taken with great caution
    • …
    corecore