26 research outputs found
Gene expression profiling in chicken heterophils with Salmonella enteritidis stimulation using a chicken 44 K Agilent microarray
BACKGROUND: Salmonella enterica serovar Enteritidis (SE) is one of the most common food-borne pathogens that cause human salmonellosis and usually results from the consumption of contaminated poultry products. The mechanism of SE resistance in chickens remains largely unknown. Previously, heterophils isolated from broilers with different genetic backgrounds (SE-resistant [line A] and -susceptible [line B]) have been shown to be important in defending against SE infections. To dissect the interplay between heterophils and SE infection, we utilized large-scale gene expression profiling. RESULTS: The results showed more differentially expressed genes were found between different lines than between infection (SE-treated) and non-infection (control) samples within line. However, the numbers of expressed immune-related genes between these two comparisons were dramatically different. More genes related to immune function were down-regulated in line B than line A. The analysis of the immune-related genes indicated that SE infection induced a stronger, up-regulated gene expression of line heterophils A than line B, and these genes include several components in the Toll-like receptor (TLR) signaling pathway, and genes involved in T-helper cell activation. CONCLUSION: We found: (1) A divergent expression pattern of immune-related genes between lines of different genetic backgrounds. The higher expression of immune-related genes might be more beneficial to enhance host immunity in the resistant line; (2) a similar TLR regulatory network might exist in both lines, where a possible MyD88-independent pathway may participate in the regulation of host innate immunity; (3) the genes exclusively differentially expressed in line A or line B with SE infection provided strong candidates for further investigating SE resistance and susceptibility. These findings have laid the foundation for future studies of TLR pathway regulation and cellular modulation of SE infection in chickens
The genomic architecture of resistance to Campylobacter jejuni intestinal colonisation in chickens
Campylobacter is the leading cause of foodborne diarrhoeal illness in humans and is mostly acquired from consumption or handling of contaminated poultry meat. In the absence of effective licensed vaccines and inhibitors, selection for chickens with increased resistance to Campylobacter could potentially reduce its subsequent entry into the food chain. Campylobacter intestinal colonisation levels are influenced by the host genetics of the chicken. In the present study, two chicken populations were used to investigate the genetic architecture of avian resistance to colonisation: (i) a back-cross of two White Leghorn derived inbred lines [(61 x N) x N] known to differ in resistance to Campylobacter colonisation and (ii) a 9th generation advanced intercross (61 x N) line
Inhibition of NF-kB 1 (NF-kBp50) by RNA interference in chicken macrophage HD11 cell line challenged with Salmonellaenteritidis
The NF-kB pathway plays an important role in regulating the immunity response in animals. In this study, small interfering RNAs (siRNA) were used to specifically inhibit NF-kB 1 expression and to elucidate the role of NF-kB in the signal transduction pathway of the Salmonella challenge in the chicken HD11 cell line. The cells were transfected with either NF-kB 1 siRNA, glyceraldehyde 3-phosphate dehydrogenase siRNA (positive control) or the negative control siRNA for 24 h, followed by Salmonella enteritidis (SE) challenge or non-challenge for 1 h and 4 h. Eight candidate genes related to the signal pathway of SE challenge were selected to examine the effect of NF-kB 1 inhibition on their expressions by mRNA quantification. The results showed that, with a 36% inhibition of NF-kB 1 expression, gene expression of both Toll-like receptor (TLR) 4 and interleukin (IL)-6 was consistently and significantly increased at both 1 h and 4 h following SE challenge, whereas the gene expression of MyD88 and IL-1β was increased at 1 h and 4 h, respectively. These findings suggest a likely inhibitory regulation by NF-kB 1, and could lay the foundation for studying the gene network of the innate immune response of SE infection in chickens
Phenotypic and genetic variation in the response of chickens to Eimeria tenella induced coccidiosis
Background: Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection.Results: Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level.Conclusions: Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD)
Highly multiplexed quantitative PCR-based platform for evaluation of chicken immune responses
To address the need for sensitive high-throughput assays to analyse avian innate and adaptive immune responses, we developed and validated a highly multiplexed qPCR 96.96 Fluidigm Dynamic Array to analyse the transcription of chicken immune-related genes. This microfluidic system permits the simultaneous analysis of expression of 96 transcripts in 96 samples in 6 nanolitre reactions and the 9,216 reactions are ready for interpretation immediately. A panel of 89 genes was selected from an RNA-seq analysis of the transcriptional response of chicken macrophages, dendritic cells and heterophils to agonists of innate immunity and from published transcriptome data. Assays were confirmed to be highly specific by amplicon sequencing and melting curve analysis and the reverse transcription and preamplification steps were optimised. The array was applied to RNA of various tissues from a commercial line of broiler chickens housed at two different levels of biosecurity. Gut-associated lymphoid tissues, bursa, spleen and peripheral blood leukocytes were isolated and transcript levels for immune-related genes were defined. The results identified blood cells as a potentially reliable indicator of immune responses among all the tissues tested with the highest number of genes significantly differentially transcribed between birds housed under varying biosecurity levels. Conventional qPCR analysis of three differentially transcribed genes confirmed the results from the multiplex qPCR array. A highly multiplexed qPCR-based platform for evaluation of chicken immune responses has been optimised and validated using samples from commercial chickens. Apart from applications in selective breeding programmes, the array could be used to analyse the complex interplay between the avian immune system and pathogens by including pathogen-specific probes, to screen vaccine responses, and as a predictive tool for immune robustness
Dietary supplementation with a microencapsulated blend of organic acids and botanicals alters the kinome in the ileum and jejunum of Gallus gallus
The use of natural products as feed additives in the poultry industry is increasing; however, most studies focus on performance and growth with little regard for determining mechanism. Our laboratory designed a chicken (Gallus gallus)-specific immunometabolic kinome peptide array. Using this tool to examine the active enzymes responsible for phosphorylation events (kinases) provides important information on host and cellular functions. The objective of this project was to determine if feeding a microencapsulated product comprised of a blend of organic acids and botanicals (AviPlus\uaeP) impacts the intestinal kinome of broiler chickens (Gallus gallus). Day-of-hatch chicks were provided 0 or 500g/MT of the additive and jejunal and ileal segments collected for kinome analysis to determine the mode-of-action of the additive. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed by uploading the statistically significant peptides to the Search Tool for the Retrieval of Interacting Genes database. As a whole, GO and KEGG analysis showed similar activities in the ileum and jejunum. However, there were a small number of KEGG pathways that were only activated in either the ileum or jejunum, but not both. Analysis of the adipocytokine and PI3K-AKT signaling pathways showed differences between ileal and jejunal activity that were controlled, in part, by AKT3. Additionally, cytokine/chemokine evaluation showed the ileum had higher IL1\u3b2, IL6, IL10, TNF\u3b1, IFN\u3b3, CXCL8, and CCL4 mRNA expression levels (P<0.05). As a whole, the data showed the addition of microencapsulated organic acids and botanicals to a broiler diet activated many of the same signaling pathways in the ileum and jejunum; however, distinctions were observed. Taken together, the findings of this study begin to define the mode-of-action that microencapsulated organic acids and botanicals have on two important intestinal segments responsible for nutrient digestion and absorption in chickens
Gene expression profiling in chicken heterophils with <it>Salmonella </it>enteritidis stimulation using a chicken 44 K Agilent microarray
Abstract Background Salmonella enterica serovar Enteritidis (SE) is one of the most common food-borne pathogens that cause human salmonellosis and usually results from the consumption of contaminated poultry products. The mechanism of SE resistance in chickens remains largely unknown. Previously, heterophils isolated from broilers with different genetic backgrounds (SE-resistant [line A] and -susceptible [line B]) have been shown to be important in defending against SE infections. To dissect the interplay between heterophils and SE infection, we utilized large-scale gene expression profiling. Results The results showed more differentially expressed genes were found between different lines than between infection (SE-treated) and non-infection (control) samples within line. However, the numbers of expressed immune-related genes between these two comparisons were dramatically different. More genes related to immune function were down-regulated in line B than line A. The analysis of the immune-related genes indicated that SE infection induced a stronger, up-regulated gene expression of line heterophils A than line B, and these genes include several components in the Toll-like receptor (TLR) signaling pathway, and genes involved in T-helper cell activation. Conclusion We found: (1) A divergent expression pattern of immune-related genes between lines of different genetic backgrounds. The higher expression of immune-related genes might be more beneficial to enhance host immunity in the resistant line; (2) a similar TLR regulatory network might exist in both lines, where a possible MyD88-independent pathway may participate in the regulation of host innate immunity; (3) the genes exclusively differentially expressed in line A or line B with SE infection provided strong candidates for further investigating SE resistance and susceptibility. These findings have laid the foundation for future studies of TLR pathway regulation and cellular modulation of SE infection in chickens.</p