2,089 research outputs found

    Revised physical elements of the astrophysically important O9.5+O9.5V eclipsing binary system Y Cyg

    Full text link
    Thanks to its long and rich observational history and rapid apsidal motion, the massive eclipsing binary Y Cyg represents one of the cornestones to critical tests of stellar evolution theory for massive stars. Yet, the determination of the basic physical properties is less accurate than it could be given the existing number of spectral and photometric observations. Our goal is to analyze all these data simultaneously with the new dedicated series of our own spectral and photometric observations from observatories widely separated in longitude. We obtained new series of UBV observations at three observatories separated in local time to obtain complete light curves of Y Cyg for its orbital period close to 3 days. This new photometry was reduced and carefully transformed to the standard UBV system using the HEC22 program. We also obtained new series of red spectra secured at two observatories and re-analyzed earlier obtained blue electronic spectra. Our analyses provide the most accurate so far published value of the apsidal period of 47.805 +/- 0.030 yrs and the following physical elements: M1=17.72+/-0.35$ Msun, M2=17.73+/-0.30 Msun, R1=5.785+/-0.091 Rsun, and R2=5.816+/-0.063 Rsun. The disentangling thus resulted in the masses, which are somewhat higher than all previous determinations and virtually the same for both stars, while the light curve implies a slighly higher radius and luminosity for star 2. The above empirical values imply the logarithm of the internal structure constant log k2 = -1.937. A comparison with Claret's stellar interior models implies an age close to 2 millions yrs for both stars. The claimed accuracy of modern element determination of 1-2 per cent seems still a bit too optimistic and obtaining new high-dispersion and high-resolution spectra is desirable.Comment: 13 pages; accepted for publication in Astronomy and Astrophysic

    Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    Get PDF
    Submitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingNeutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors

    Understanding Mechanochemical Coupling in Kinesins Using First-Passage Time Processes

    Full text link
    Kinesins are processive motor proteins that move along microtubules in a stepwise manner, and their motion is powered by the hydrolysis of ATP. Recent experiments have investigated the coupling between the individual steps of single kinesin molecules and ATP hydrolysis, taking explicitly into account forward steps, backward steps and detachments. A theoretical study of mechanochemical coupling in kinesins, which extends the approach used successfully to describe the dynamics of conventional motor proteins, is presented. The possibility of irreversible detachments of kinesins from the microtubules is also explicitly taken into account. Using the method of first- passage times, experimental data on the mechanochemical coupling in kinesins are fully described using the simplest two-state model. It is shown that the dwell times for the kinesin to move one step forward or backward, or to dissociate irreversibly are the same, although the probabilities of these events are different. It is concluded that the current theoretical view, that only the forward motion of the motor protein molecule is coupled to ATP hydrolysis, is consistent with all available experimental observations for kinesins.Comment: Submitted to Biophysical Journa

    Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    Full text link
    Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.Comment: Submitted for the January 2014 Fermilab Physics Advisory Committee meetin

    Increased number of intestinal villous M cells in levamisole -pretreated weaned pigs experimentally infected with F4ac+ enterotoxigenic Escherichia coli strain

    Get PDF
    Immunoprophylaxis of porcine postweaning colibacillosis (PWC) caused by enterotoxigenic Escherichia coli (ETEC) expressing F4 fimbriae is an unsolved problem. Just as ETEC strains can exploit intestinal microfold (M) cells as the entry portal for infection, their high transcytotic ability make them an attractive target for mucosally delivered vaccines, adjuvants and therapeutics. We have developed a model of parenteral/oral immunization of 4-weeks-old pigs with either levamisole or vaccine candidate F4ac+ non-ETEC strain to study their effects on de novo differentiation of antigen-sampling M cells. Identification, localization and morphometric quantification of cytokeratin 18 positive M cells in the ileal mucosa of 6-weeks-old pigs revealed that they were: 1) exclusively located within villous epithelial layer, 2) significantly numerous (P< 0.01) in levamisole pretreated/challenged pigs, and 3) only slightly, but not significantly numerous in vaccinated/challenged pigs compared with non-pretreated/challenged control pigs. The fact that levamisole may affect the M cells frequency by increasing their numbers, makes it an interesting adjuvant to study development of an effective M cell-targeted vaccine against porcine PWC

    Perturbation Theory for Path Integrals of Stiff Polymers

    Full text link
    The wormlike chain model of stiff polymers is a nonlinear σ\sigma-model in one spacetime dimension in which the ends are fluctuating freely. This causes important differences with respect to the presently available theory which exists only for periodic and Dirichlet boundary conditions. We modify this theory appropriately and show how to perform a systematic large-stiffness expansions for all physically interesting quantities in powers of L/ξL/\xi, where LL is the length and ξ\xi the persistence length of the polymer. This requires special procedures for regularizing highly divergent Feynman integrals which we have developed in previous work. We show that by adding to the unperturbed action a correction term Acorr{\cal A}^{\rm corr}, we can calculate all Feynman diagrams with Green functions satisfying Neumann boundary conditions. Our expansions yield, order by order, properly normalized end-to-end distribution function in arbitrary dimensions dd, its even and odd moments, and the two-point correlation function

    Experimentação de trigo para duplo propósito no Rio Grande do Sul, em 1999.

    Get PDF
    bitstream/item/84110/1/CNPT-BOL.-PESQ.-5-00.pd

    The key role of smooth impurity potential in formation of hole spectrum for p-Ge/Ge_{1-x}Si_x heterostructures in the quantum Hall regime

    Full text link
    We have measured the temperature (0.1 <= T <= 15 K) and magnetic field (0 <= B <= 12 T) dependences of longitudinal and Hall resistivities for the p-Ge_0.93Si_0.07/Ge multilayers with different Ge layer widths 10 <= d_w <= 38 nm and hole densities p_s = (1-5)10^11 cm^-2. Two models for the long-range random impurity potential (the model with randomly distributed charged centers located outside the conducting layer and the model of the system with a spacer) are used for evaluation of the impurity potential fluctuation characteristics: the random potential amplitude, nonlinear screening length in vicinity of integer filling factors nu = 1 and nu = 2 and the background density of state (DOS). The described models are suitable for explanation of the unusually high value of DOS at nu = 1 and nu = 2, in contrast to the short-range impurity potential models. For half-integer filling factors the linear temperature dependence of the effective QHE plateau-to-plateau transition width nu_0(T) is observed in contrast to scaling behavior for systems with short-range disorder. The finite T -> 0 width of QHE transitions may be due to an effective low temperature screening of smooth random potential owing to Coulomb repulsion of electrons.Comment: Accepted for publication in Nanotechnolog

    Experimentação em rede de genótipos de trigo para duplo propósito no Rio Grande do Sul em 2000.

    Get PDF
    bitstream/item/84111/1/CNPT-BOL.-PESQ.-5-01.pd
    corecore