2,163 research outputs found
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Submitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingNeutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors
Revised physical elements of the astrophysically important O9.5+O9.5V eclipsing binary system Y Cyg
Thanks to its long and rich observational history and rapid apsidal motion,
the massive eclipsing binary Y Cyg represents one of the cornestones to
critical tests of stellar evolution theory for massive stars. Yet, the
determination of the basic physical properties is less accurate than it could
be given the existing number of spectral and photometric observations. Our goal
is to analyze all these data simultaneously with the new dedicated series of
our own spectral and photometric observations from observatories widely
separated in longitude. We obtained new series of UBV observations at three
observatories separated in local time to obtain complete light curves of Y Cyg
for its orbital period close to 3 days. This new photometry was reduced and
carefully transformed to the standard UBV system using the HEC22 program. We
also obtained new series of red spectra secured at two observatories and
re-analyzed earlier obtained blue electronic spectra. Our analyses provide the
most accurate so far published value of the apsidal period of 47.805 +/- 0.030
yrs and the following physical elements: M1=17.72+/-0.35$ Msun, M2=17.73+/-0.30
Msun, R1=5.785+/-0.091 Rsun, and R2=5.816+/-0.063 Rsun. The disentangling thus
resulted in the masses, which are somewhat higher than all previous
determinations and virtually the same for both stars, while the light curve
implies a slighly higher radius and luminosity for star 2. The above empirical
values imply the logarithm of the internal structure constant log k2 = -1.937.
A comparison with Claret's stellar interior models implies an age close to 2
millions yrs for both stars. The claimed accuracy of modern element
determination of 1-2 per cent seems still a bit too optimistic and obtaining
new high-dispersion and high-resolution spectra is desirable.Comment: 13 pages; accepted for publication in Astronomy and Astrophysic
Understanding Mechanochemical Coupling in Kinesins Using First-Passage Time Processes
Kinesins are processive motor proteins that move along microtubules in a
stepwise manner, and their motion is powered by the hydrolysis of ATP. Recent
experiments have investigated the coupling between the individual steps of
single kinesin molecules and ATP hydrolysis, taking explicitly into account
forward steps, backward steps and detachments. A theoretical study of
mechanochemical coupling in kinesins, which extends the approach used
successfully to describe the dynamics of conventional motor proteins, is
presented. The possibility of irreversible detachments of kinesins from the
microtubules is also explicitly taken into account. Using the method of first-
passage times, experimental data on the mechanochemical coupling in kinesins
are fully described using the simplest two-state model. It is shown that the
dwell times for the kinesin to move one step forward or backward, or to
dissociate irreversibly are the same, although the probabilities of these
events are different. It is concluded that the current theoretical view, that
only the forward motion of the motor protein molecule is coupled to ATP
hydrolysis, is consistent with all available experimental observations for
kinesins.Comment: Submitted to Biophysical Journa
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Neutron tagging in Gadolinium-doped water may play a significant role in
reducing backgrounds from atmospheric neutrinos in next generation proton-decay
searches using megaton-scale Water Cherenkov detectors. Similar techniques
might also be useful in the detection of supernova neutrinos. Accurate
determination of neutron tagging efficiencies will require a detailed
understanding of the number of neutrons produced by neutrino interactions in
water as a function of momentum transferred. We propose the Atmospheric
Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the
neutron yield of atmospheric neutrino interactions in gadolinium-doped water.
An innovative aspect of the ANNIE design is the use of precision timing to
localize interaction vertices in the small fiducial volume of the detector. We
propose to achieve this by using early production of LAPPDs (Large Area
Picosecond Photodetectors). This experiment will be a first application of
these devices demonstrating their feasibility for Water Cherenkov neutrino
detectors.Comment: Submitted for the January 2014 Fermilab Physics Advisory Committee
meetin
Increased number of intestinal villous M cells in levamisole -pretreated weaned pigs experimentally infected with F4ac+ enterotoxigenic Escherichia coli strain
Immunoprophylaxis of porcine postweaning colibacillosis (PWC) caused by enterotoxigenic Escherichia coli (ETEC) expressing F4 fimbriae is an unsolved problem. Just as ETEC strains can exploit intestinal microfold (M) cells as the entry portal for infection, their high transcytotic ability make them an attractive target for mucosally delivered vaccines, adjuvants and therapeutics. We have developed a model of parenteral/oral immunization of 4-weeks-old pigs with either levamisole or vaccine candidate F4ac+ non-ETEC strain to study their effects on de novo differentiation of antigen-sampling M cells. Identification, localization and morphometric quantification of cytokeratin 18 positive M cells in the ileal mucosa of 6-weeks-old pigs revealed that they were: 1) exclusively located within villous epithelial layer, 2) significantly numerous (P< 0.01) in levamisole pretreated/challenged pigs, and 3) only slightly, but not significantly numerous in vaccinated/challenged pigs compared with non-pretreated/challenged control pigs. The fact that levamisole may affect the M cells frequency by increasing their numbers, makes it an interesting adjuvant to study development of an effective M cell-targeted vaccine against porcine PWC
Perturbation Theory for Path Integrals of Stiff Polymers
The wormlike chain model of stiff polymers is a nonlinear -model in
one spacetime dimension in which the ends are fluctuating freely. This causes
important differences with respect to the presently available theory which
exists only for periodic and Dirichlet boundary conditions. We modify this
theory appropriately and show how to perform a systematic large-stiffness
expansions for all physically interesting quantities in powers of ,
where is the length and the persistence length of the polymer. This
requires special procedures for regularizing highly divergent Feynman integrals
which we have developed in previous work. We show that by adding to the
unperturbed action a correction term , we can calculate
all Feynman diagrams with Green functions satisfying Neumann boundary
conditions. Our expansions yield, order by order, properly normalized
end-to-end distribution function in arbitrary dimensions , its even and odd
moments, and the two-point correlation function
Experimentação de trigo para duplo propósito no Rio Grande do Sul, em 1999.
bitstream/item/84110/1/CNPT-BOL.-PESQ.-5-00.pd
The key role of smooth impurity potential in formation of hole spectrum for p-Ge/Ge_{1-x}Si_x heterostructures in the quantum Hall regime
We have measured the temperature (0.1 <= T <= 15 K) and magnetic field (0 <=
B <= 12 T) dependences of longitudinal and Hall resistivities for the
p-Ge_0.93Si_0.07/Ge multilayers with different Ge layer widths 10 <= d_w <= 38
nm and hole densities p_s = (1-5)10^11 cm^-2. Two models for the long-range
random impurity potential (the model with randomly distributed charged centers
located outside the conducting layer and the model of the system with a spacer)
are used for evaluation of the impurity potential fluctuation characteristics:
the random potential amplitude, nonlinear screening length in vicinity of
integer filling factors nu = 1 and nu = 2 and the background density of state
(DOS). The described models are suitable for explanation of the unusually high
value of DOS at nu = 1 and nu = 2, in contrast to the short-range impurity
potential models. For half-integer filling factors the linear temperature
dependence of the effective QHE plateau-to-plateau transition width nu_0(T) is
observed in contrast to scaling behavior for systems with short-range disorder.
The finite T -> 0 width of QHE transitions may be due to an effective low
temperature screening of smooth random potential owing to Coulomb repulsion of
electrons.Comment: Accepted for publication in Nanotechnolog
Experimentação em rede de genótipos de trigo para duplo propósito no Rio Grande do Sul em 2000.
bitstream/item/84111/1/CNPT-BOL.-PESQ.-5-01.pd
- …