37 research outputs found

    Mode of photoexcited C60 fullerene involvement in potentiating cisplatin toxicity against drug-resistant L1210 cells

    Get PDF
    Introduction: C60 fullerene has received great attention as a candidate for biomedical applications. Due to unique structure and properties, C60 fullerene nanoparticles are supposed to be useful in drug delivery, photodynamic therapy (PDT) of cancer, and reversion of tumor cells’ multidrug resistance. The aim of this study was to elucidate the possible molecular mechanisms involved in photoexcited C60 fullerene-dependent enhancement of cisplatin toxicity against leukemic cells resistant to cisplatin. Methods: Stable homogeneous pristine C60 fullerene aqueous colloid solution (10-4 М, purity 99.5%) was used in the study. The photoactivation of C60 fullerene accumulated by L1210R cells was done by irradiation in microplates with light-emitting diode lamp (420-700 nm light, 100 mW·cm-2). Cells were further incubated with the addition of Cis-Pt to a final concentration of 1 μg/mL. Activation of p38 MAPK was visualized by Western blot analysis. Flow cytometry was used for the estimation of cells distribution on cell cycle. Mitochondrial membrane potential (Δψm) was estimated with the use of fluorescent potential-sensitive probe TMRE (Tetramethylrhodamine Ethyl Ester). Results: Cis-Pt applied alone at 1 μg/mL concentration failed to affect mitochondrial membrane potential in L1210R cells or cell cycle distribution as compared with untreated cells. Activation of ROS-sensitive proapoptotic p38 kinase and enhanced content of cells in subG1 phase were detected after irradiation of L1210R cells treated with 10-5M C60 fullerene. Combined treatment with photoexcited C60 fullerene and Cis-Pt was followed by the dissipation of Δψm at early-term period, blockage of cell transition into S phase, and considerable accumulation of cells in proapoptotic subG1 phase at prolonged incubation. Conclusion: The effect of the synergic cytotoxic activity of both agents allowed to suppose that photoexcited C60 fullerene promoted Cis-Pt accumulation in leukemic cells resistant to Cis-Pt. The data obtained could be useful for the development of new approaches to overcome drug-resistance of leukemic cells

    C60 fullerene against SARS-CoV-2 coronavirus: an in silico insight

    Get PDF
    Based on WHO reports the new SARS-CoV-2 coronavirus is currently widespread all over the world. So far > 162 million cases have been confirmed, including > 3 million deaths. Because of the pandemic still spreading across the globe the accomplishment of computational methods to find new potential mechanisms of virus inhibitions is necessary. According to the fact that C60 fullerene (a sphere-shaped molecule consisting of carbon) has shown inhibitory activity against various protein targets, here the analysis of the potential binding mechanism between SARS-CoV-2 proteins 3CLpro and RdRp with C60 fullerene was done; it has resulted in one and two possible binding mechanisms, respectively. In the case of 3CLpro, C60 fullerene interacts in the catalytic binding pocket. And for RdRp in the first model C60 fullerene blocks RNA synthesis pore and in the second one it prevents binding with Nsp8 co-factor (without this complex formation, RdRp can’t perform its initial functions). Then the molecular dynamics simulation confirmed the stability of created complexes. The obtained results might be a basis for other computational studies of 3CLPro and RdRp potential inhibition ways as well as the potential usage of C60 fullerene in the fight against COVID-19 disease

    Effect of C60 fullerene on recovery of muscle soleus in rats after atrophy induced by achillotenotomy

    Get PDF
    Biomechanical and biochemical changes in the muscle soleus of rats during imitation of hind limbs unuse were studied in the model of the Achilles tendon rupture (Achillotenotomy). Oral administration of water-soluble C 60 fullerene at a dose of 1 mg/kg was used as a therapeutic agent throughout the experiment. Changes in the force of contraction and the integrated power of the muscle, the time to reach the maximum force response, the mechanics of fatigue processes development, in particular, the transition from dentate to smooth tetanus, as well as the levels of pro- and antioxidant balance in the blood of rats on days 15, 30 and 45 after injury were described. The obtained results indicate a promising prospect for C 60 fullerene use as a powerful antioxidant for reducing and correcting pathological conditions of the muscular system arising from skeletal muscle atrophy

    Analysis of biomechanical parameters of muscle soleus contraction and blood biochemical parameters in rat with chronic glyphosate intoxication and therapeutic use of C60 fullerene

    Get PDF
    The widespread use of glyphosate as a herbicide in agriculture can lead to the presence of its residues and metabolites in food for human consumption and thus pose a threat to human health. It has been found that glyphosate reduces energy metabolism in the brain, its amount increases in white muscle fibers. At the same time, the effect of chronic use of glyphosate on the dynamic properties of skeletal muscles remains practically unexplored. The selected biomechanical parameters (the integrated power of muscle contraction, the time of reaching the muscle contraction force its maximum value and the reduction of the force response by 50% and 25% of the initial values during stimulation) of muscle soleus contraction in rats, as well as blood biochemical parameters (the levels of creatinine, creatine phosphokinase, lactate, lactate dehydrogenase, thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione and catalase) were analyzed after chronic glyphosate intoxication (oral administration at a dose of 10 μg/kg of animal weight) for 30 days. Water-soluble C60 fullerene, as a poweful antioxidant, was used as a therapeutic nanoagent throughout the entire period of intoxication with the above herbicide (oral administration at doses of 0.5 or 1 mg/kg). The data obtained show that the introduction of C60 fullerene at a dose of 0.5 mg/kg reduces the degree of pathological changes by 40–45%. Increasing the dose of C60 fullerene to 1 mg/kg increases the therapeutic effect by 55–65%, normalizing the studied biomechanical and biochemical parameters. Thus, C60 fullerenes can be effective nanotherapeutics in the treatment of glyphosate-based herbicide poisoning

    Analysis of biomechanical and biochemical markers of rat muscle soleus fatigue processes development during long-term use of C60 fullerene and N-acetylcysteine

    Get PDF
    The development of an effective therapy aimed at restoring muscle dysfunctions in clinical and sports medicine, as well as optimizing working activity in general remains an urgent task today. Modern nanobiotechnologies are able to solve many clinical and social health problems, in particular, they offer new therapeutic approaches using biocompatible and bioavailable nanostructures with specific bioactivity. Therefore, the nanosized carbon molecule, C60 fullerene, as a powerful antioxidant, is very attractive. In this study, a comparative analysis of the dynamic of muscle soleus fatigue processes in rats was conducted using 50 Hz stimulation for 5 s with three consistent pools after intraperitoneal administration of the following antioxidants: C60 fullerene (a daily dose of 1 mg/kg one hour prior to the start of the experiment) and N-acetylcysteine (NAC; a daily dose of 150 mg/kg one hour prior to the start of the experiment) during five days. Changes in the integrated power of muscle contraction, levels of the maximum and minimum contraction force generation, time of reduction of the contraction force by 50% of its maximum value, achievement of the maximum force response, and delay of the beginning of a single contraction force response were analyzed as biomechanical markers of fatigue processes. Levels of creatinine, creatine phosphokinase, lactate, and lactate dehydrogenase, as well as pro- and antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione, and catalase activity) in the blood of rats were analyzed as biochemical markers of fatigue processes. The obtained data indicate that applied therapeutic drugs have the most significant effects on the 2nd and especially the 3rd stimulation pools. Thus, the application of C60 fullerene has a (50-80)% stronger effect on the resumption of muscle biomechanics after the beginning of fatigue than NAC on the first day of the experiment. There is a clear trend toward a positive change in all studied biochemical parameters by about (12-15)% after therapeutic administration of NAC and by (20-25)% after using C60 fullerene throughout the experiment. These findings demonstrate the promise of using C60 fullerenes as potential therapeutic nanoagents that can reduce or adjust the pathological conditions of the muscular system that occur during fatigue processes in skeletal muscles

    C60 fullerene as synergistic agent in tumor-inhibitory Doxorubicin treatment

    Get PDF
    Background: Doxorubicin (Dox) is one of the most potent anticancer drugs, but its successful use is hampered by high toxicity caused mainly by generation of reactive oxygen species. One approach to protect against Dox-dependent chemical insult is combined use of the cytostatic drug with antioxidants. C60 fullerene has a nanostructure with both antioxidant and antitumor potential and may be useful in modulating cell responses to Dox. --- Objective: The aim of this study was to estimate the antitumor effect and antioxidant enzyme activity of combined C60 fullerene and Dox (C60 + Dox) in the liver and heart of mice with Lewis lung carcinoma compared with Dox treatment alone. --- Methods: Highly stable pristine C60 fullerene aqueous colloid solution (concentration 1.0 mg/ml, average hydrodynamic diameter of nanoparticles 50 nm) was used in the study and characterized by means of atomic force microscopy (AFM). The in vivo investigation of C60-Dox action was performed via the standard methods of histological and enzyme activity analyses. --- Results: Dox (total dose 2.5 mg/kg) combined with C60 fullerene (total dose 25 mg/kg) in tumor-bearing animals resulted in tumor growth inhibition, prolongation of life, metastasis inhibition, and increased number of apoptotic tumor cells and was more effective than the corresponding course of Dox treatment alone. C60 fullerene demonstrated a protective effect against superoxide dismutase and glutathione peroxidase inhibition induced by Dox-dependent oxidative insult in the liver and heart. --- Conclusion: Combined treatment with C60 + Dox is considered to be a promising approach for cancer chemotherapy

    A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity

    Get PDF
    The self-organization of C60 fullerene and cisplatin in aqueous solution was investigated using the computer simulation, dynamic light scattering and atomic force microscopy techniques. The results evidence the complexation between the two compounds. The genotoxicity of С60 fullerene, Cis and their complex was evaluated in vitro with the comet assay using human resting lymphocytes and lymphocytes after blast transformation. The cytotoxicity of the mentioned compounds was estimated by Annexin V/PI double staining followed by flow cytometry. The results clearly demonstrate that water-soluble C60 fullerene nanoparticles (0.1 mg/mL) do not induce DNA strand breaks in normal and transformed cells. C60 fullerene in the mixture with Cis does not influence genotoxic Cis activity in vitro, affects the cell-death mode in treated resting human lymphocytes and reduces the fraction of necrotic cells

    Antitumor efficiency of the natural alkaloid berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo

    Get PDF
    Berberine (Ber) is a herbal alkaloid with pharmacological activity in general and a high anticancer potency in particular. However, due to its low bioavailability, the difficulty in reaching a target and choosing the right dose, there is a need to improve approaches of Ber use in anticancer therapy. In this study, Ber, noncovalently bound to a carbon nanostructure C60 fullerene (C60) at various molar ratios of the components, was explored against Lewis lung carcinoma (LLC)

    The new water-soluble thermosensitive star-like copolymer as a promising carrier of the chemotherapeutic drug doxorubicin

    Get PDF
    A new water-soluble thermosensitive star-like copolymer, dextran-graft-poly-N-iso-propilacrylamide (D-g-PNIPAM), was created and characterized by various techniques (size-exclusion chromatography, differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) spectroscopy). The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa) as a model for cancer cells was studied using MTT and Live/Dead assays after incubation with a D-g-PNIPAM copolymer as a carrier for the drug doxorubicin (Dox) as well as a D-g-PNIPAM + Dox mixture as a function of the concentration. FTIR spectroscopy clearly indicated the complex formation of Dox with the D-g-PNIPAM copolymer. The size distribution of particles in Hank’s solution was determined by the DLS technique at different temperatures. The in vitro uptake of the studied D-g-PNIPAM + Dox nanoparticles into cancer cells was demonstrated by confocal laser scanning microscopy. It was found that D-g-PNIPAM + Dox nanoparticles in contrast to Dox alone showed higher toxicity toward cancer cells. All of the aforementioned facts indicate a possibility of further preclinical studies of the water-soluble D-g-PNIPAM particles’ behavior in animal tumor models in vivo as promising carriers of anticancer agents

    The effect of C60 fullerenes on the recovery of muscle soleus contraction dynamics in rats after chronic alcoholization

    Get PDF
    Background. It has been shown that the available therapeutic agents do not eliminate the consequences of miotic pathologies in chronic alcoholism, the most significant of which are disturbances in the dynamics of muscle contraction. A positive effect of biocompatible water-soluble C60 fullerenes on the contraction parameters of damaged muscles has been established. In addition, administration of C60 fullerene aqueous solution during chronic alcoholization of rats protects muscle tissue from damage caused by oxidative stress. Materials and Methods. Biomechanical parameters such as the values of the minimum and maximum contraction force and the muscle force impulse were evaluated using tensometry. The blood levels of creatine phosphokinase and lactate dehydrogenase, creatinine and lactate as well as the level of oxidative processes in muscle tissue of experimental animals (content of hydrogen peroxide, activity of catalase, glutathione peroxidase and superoxide dismutase) as markers of muscle damage were determined using methods of biochemical analysis. Results. The C60 fullerene aqueous solution effect on the skeletal muscle contraction dynamics in rats after chronic alcoholization for 9 months and cessation of alcohol consumption for 1 month was investigated. It was established that water-soluble C60 fullerenes (daily dose of 1 mg/kg) reduce the effects of chronic alcoholization by 35–40±2 % on the studied biomechanical parameters and by 20±1 % on the studied biochemical parameters compared to the group of alcoholized animals, thus increasing the energy capabilities of the muscular system. Conclusions. The obtained data indicate a pronounced protective effect of C60 fullerenes on the muscle soleus contraction dynamics during the development of alcoholic myopathy, which opens up the potential possibility of their use for the prevention and correction of miotic damage
    corecore