91 research outputs found
Auto and crosscorrelograms for the spike response of LIF neurons with slow synapses
An analytical description of the response properties of simple but realistic
neuron models in the presence of noise is still lacking. We determine
completely up to the second order the firing statistics of a single and a pair
of leaky integrate-and-fire neurons (LIFs) receiving some common slowly
filtered white noise. In particular, the auto- and cross-correlation functions
of the output spike trains of pairs of cells are obtained from an improvement
of the adiabatic approximation introduced in \cite{Mor+04}. These two functions
define the firing variability and firing synchronization between neurons, and
are of much importance for understanding neuron communication.Comment: 5 pages, 3 figure
Universal properties of correlation transfer in integrate-and-fire neurons
One of the fundamental characteristics of a nonlinear system is how it
transfers correlations in its inputs to correlations in its outputs. This is
particularly important in the nervous system, where correlations between
spiking neurons are prominent. Using linear response and asymptotic methods for
pairs of unconnected integrate-and-fire (IF) neurons receiving white noise
inputs, we show that this correlation transfer depends on the output spike
firing rate in a strong, stereotyped manner, and is, surprisingly, almost
independent of the interspike variance. For cells receiving heterogeneous
inputs, we further show that correlation increases with the geometric mean
spiking rate in the same stereotyped manner, greatly extending the generality
of this relationship. We present an immediate consequence of this relationship
for population coding via tuning curves
Spiking Neurons Learning Phase Delays
Time differences between the two ears are an important cue for animals to azimuthally locate a sound source. The first binaural brainstem nucleus, in mammals the medial superior olive, is generally believed to perform the necessary computations. Its cells are sensitive to variations of interaural time differences of about 10 μs. The classical explanation of such a neuronal time-difference tuning is based on the physical concept of delay lines. Recent data, however, are inconsistent with a temporal delay and rather favor a phase delay. By means of a biophysical model we show how spike-timing-dependent synaptic learning explains precise interplay of excitation and inhibition and, hence, accounts for a physical realization of a phase delay
Detection of subthreshold pulses in neurons with channel noise
Neurons are subject to various kinds of noise. In addition to synaptic noise,
the stochastic opening and closing of ion channels represents an intrinsic
source of noise that affects the signal processing properties of the neuron. In
this paper, we studied the response of a stochastic Hodgkin-Huxley neuron to
transient input subthreshold pulses. It was found that the average response
time decreases but variance increases as the amplitude of channel noise
increases. In the case of single pulse detection, we show that channel noise
enables one neuron to detect the subthreshold signals and an optimal membrane
area (or channel noise intensity) exists for a single neuron to achieve optimal
performance. However, the detection ability of a single neuron is limited by
large errors. Here, we test a simple neuronal network that can enhance the
pulse detecting abilities of neurons and find dozens of neurons can perfectly
detect subthreshold pulses. The phenomenon of intrinsic stochastic resonance is
also found both at the level of single neurons and at the level of networks. At
the network level, the detection ability of networks can be optimized for the
number of neurons comprising the network.Comment: 14 pages, 9 figure
StdpC: a modern dynamic clamp
With the advancement of computer technology many novel uses of dynamic clamp have become possible. We have added new features to our dynamic clamp software StdpC (“Spike timing-dependent plasticity Clamp”) allowing such new applications while conserving the ease of use and installation of the popular earlier Dynclamp 2/4 package. Here, we introduce the new features of a waveform generator, freely programmable Hodgkin–Huxley conductances, learning synapses, graphic data displays, and a powerful scripting mechanism and discuss examples of experiments using these features. In the first example we built and ‘voltage clamped’ a conductance based model cell from a passive resistor–capacitor (RC) circuit using the dynamic clamp software to generate the voltage-dependent currents. In the second example we coupled our new spike generator through a burst detection/burst generation mechanism in a phase-dependent way to a neuron in a central pattern generator and dissected the subtle interaction between neurons, which seems to implement an information transfer through intraburst spike patterns. In the third example, making use of the new plasticity mechanism for simulated synapses, we analyzed the effect of spike timing-dependent plasticity (STDP) on synchronization revealing considerable enhancement of the entrainment of a post-synaptic neuron by a periodic spike train. These examples illustrate that with modern dynamic clamp software like StdpC, the dynamic clamp has developed beyond the mere introduction of artificial synapses or ionic conductances into neurons to a universal research tool, which might well become a standard instrument of modern electrophysiology
The 'At-risk mental state' for psychosis in adolescents : clinical presentation, transition and remission.
Despite increased efforts over the last decade to prospectively identify individuals at ultra-high risk of developing a psychotic illness, limited attention has been specifically directed towards adolescent populations (<18 years). In order to evaluate how those under 18 fulfilling the operationalised criteria for an At-Risk Mental State (ARMS) present and fare over time, we conducted an observational study. Participants (N = 30) generally reported a high degree of functional disability and frequent and distressing perceptual disturbance, mainly in the form of auditory hallucinations. Seventy percent (21/30) were found to fulfil the criteria for a co-morbid ICD-10 listed mental health disorder, with mood (affective; 13/30) disorders being most prevalent. Overall transition rates to psychosis were low at 24 months follow-up (2/28; 7.1 %) whilst many participants demonstrated a significant reduction in psychotic-like symptoms. The generalisation of these findings may be limited due to the small sample size and require replication in a larger sample
Effects of Soil Types and Fertilizers on Growth, Yield, and Quality of Edible Amaranthus tricolor lines in Okinawa, Japan
Soil types and fertilizer regimes were evaluated on growth, yield, and quality of Amaranthus tricolor lines, IB (India Bengal), TW (Taiwan), BB (Bangladesh B), and BC (Bangladesh C) in developing management practices in Okinawa. Growth and yield of all amaranth lines were higher in gray soil (pH 8.4) than in dark red soil (pH 6.6) and red soil (pH 5.4). The combined NPK fertilizer resulted in highest growth parameters and yield of amaranths in all soils. Nitrogen fertilizer alone did not affect growth parameters and yield of amaranths in dark red and red soils. Growth parameters and yield increased similarly with the 30, 40, and 50 g m−2 of NPK fertilizer in BB line, and with the 20, 30, 40, and 50 g m−2 in BC line. Agronomic efficiency of NPK fertilizer at 50 g m−2 was not prominent on the amaranths, compared to the fertilizer at 40 g m−2. Amaranth lines had higher Na in dark red and red soils, while K and Mg in gray soil, Ca in gray and red soils, and Fe in dark red soil. The NPK fertilizer resulted in higher Na, Ca, Mg, and P in BB line in glasshouse. These minerals in BB line were not clearly affected, but in BC line were lower with NPK fertilizer at 20–50 g m−2 in field. These studies indicate that gray soil is best for amaranth cultivation and combined NPK fertilizer at 20–40 g m−2 is effective in gray soil in Okinawa for higher yield and minerals of amaranth
Gradients and Modulation of K+ Channels Optimize Temporal Accuracy in Networks of Auditory Neurons
Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express “high threshold” Kv3-family channels that are required for firing at high rates (>∼200 Hz). Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1–50 neurons, stimulated at rates between 100–1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K+ conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment
High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers
Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules
Cholinergic Activation of M2 Receptors Leads to Context-Dependent Modulation of Feedforward Inhibition in the Visual Thalamus
The temporal dynamics of inhibition within a neural network is a crucial determinant of information processing. Here, the authors describe in the visual thalamus how neuromodulation governs the magnitude and time course of inhibition in an input-dependent way
- …