105 research outputs found
Quantum number dimensional scaling analysis for excited states of multielectron atoms
A new dimensional scaling method for the calculation of excited states of
multielectron atoms is introduced. By including the principle and orbital
quantum numbers in the dimension parameter, we obtain an energy expression for
excited states including high angular momentum states. The method is tested on
He, Li, and Be. We obtain good agreement with more orthodox quantum mechanical
treatments even in the zeroth order.Comment: Submitted to Physical Review A, 13 pages, 6 Table
Vortex energy and vortex bending for a rotating Bose-Einstein condensate
For a Bose-Einstein condensate placed in a rotating trap, we give a
simplified expression of the Gross-Pitaevskii energy in the Thomas Fermi
regime, which only depends on the number and shape of the vortex lines.
Then we check numerically that when there is one vortex line, our simplified
expression leads to solutions with a bent vortex for a range of rotationnal
velocities and trap parameters which are consistent with the experiments.Comment: 7 pages, 2 figures. submitte
Unusual condensates in quark and atomic systems
In these lectures we discuss condensates which are formed in quark matter
when it is squeezed and in a gas of fermionic atoms when it is cooled. The
behavior of these two seemingly very different systems reveals striking
similarities. In particular, in both systems the Bose-Einstein condensate to
Bardeen--Cooper-Schrieffer (BEC-BCS) crossover takes place.Comment: Lectures delivered at 8th Moscow school of Physics (33rd ITEP Winter
School of Physics
On the shape of vortices for a rotating Bose Einstein condensate
For a Bose-Einstein condensate placed in a rotating trap, we study the
simplified energy of a vortex line derived in Aftalion-Riviere Phys. Rev. A 64,
043611 (2001) in order to determine the shape of the vortex line according to
the rotational velocity and the elongation of the condensate. The energy
reflects the competition between the length of the vortex which needs to be
minimized taking into account the anisotropy of the trap and the rotation term
which pushes the vortex along the z axis. We prove that if the condensate has
the shape of a pancake, the vortex stays straight along the z axis while in the
case of a cigar, the vortex is bent
Exact Eignstates for Trapped Weakly Interacting Bosons in Two Dimensions
A system of N two-dimensional weakly interacting bosons in a harmonic trap is
considered. When the two-particle potential is a delta function Smith and
Wilkin have analytically proved that the elementary symmetric polynomials of
particle coordinates measured from the center of mass are exact eigenstates. In
this study, we point out that their proof works equally well for an arbitrary
two-particle potential which possesses the translational and rotational
symmetries. We find that the interaction energy associated with the eigenstate
with angular momentum L is equal to aN(N-1)/2+(b-a)NL/2, where a and b are the
interaction energies of two bosons in the lowest-energy one-particle state with
zero and one unit of angular momentum, respectively. Additionally, we study
briefly the case of attractive quartic interactions. We prove rigorously that
the lowest-energy state is the one in which all angular momentum is carried by
the center of mass motion.Comment: 4 pages, minor changes made, to appear in PRA Brie
Dynamics of a Vortex in a Trapped Bose-Einstein Condensate
We consider a large condensate in a rotating anisotropic harmonic trap. Using
the method of matched asymptotic expansions, we derive the velocity of an
element of vortex line as a function of the local gradient of the trap
potential, the line curvature and the angular velocity of the trap rotation.
This velocity yields small-amplitude normal modes of the vortex for 2D and 3D
condensates. For an axisymmetric trap, the motion of the vortex line is a
superposition of plane-polarized standing-wave modes. In a 2D condensate, the
planar normal modes are degenerate, and their superposition can result in
helical traveling waves, which differs from a 3D condensate. Including the
effects of trap rotation allows us to find the angular velocity that makes the
vortex locally stable. For a cigar-shape condensate, the vortex curvature makes
a significant contribution to the frequency of the lowest unstable normal mode;
furthermore, additional modes with negative frequencies appear. As a result, it
is considerably more difficult to stabilize a central vortex in a cigar-shape
condensate than in a disc-shape one. Normal modes with imaginary frequencies
can occur for a nonaxisymmetric condensate (in both 2D and 3D). In connection
with recent JILA experiments, we consider the motion of a straight vortex line
in a slightly nonspherical condensate. The vortex line changes its orientation
in space at the rate proportional to the degree of trap anisotropy and can
exhibit periodic recurrences.Comment: 19 pages, 6 eps figures, REVTE
Coherent Dynamics of Vortex Formation in Trapped Bose-Einstein Condensates
Simulations of a rotationally stirred condensate show that a regime of simple
behaviour occurs in which a single vortex cycles in and out of the condensate.
We present a simple quantitative model of this behaviour, which accurately
describes the full vortex dynamics, including a critical angular speed of
stirring for vortex formation. A method for experimentally preparing a
condensate in a central vortex state is suggested.Comment: 4 pages, 4 figures, REVTeX 3.1; Submitted to Physical Review Letters
(5 February 1999); See http://www.physics.otago.ac.nz/research/bec/vortex for
MPEG movies and further information; Accepted for Physical Review Letters (24
June 1999); Changes: updated Figs 1 and 2 (new style), minor typos fixed,
more discussion at en
Modification of radiation pressure due to cooperative scattering of light
Cooperative spontaneous emission of a single photon from a cloud of N atoms
modifies substantially the radiation pressure exerted by a far-detuned laser
beam exciting the atoms. On one hand, the force induced by photon absorption
depends on the collective decay rate of the excited atomic state. On the other
hand, directional spontaneous emission counteracts the recoil induced by the
absorption. We derive an analytical expression for the radiation pressure in
steady-state. For a smooth extended atomic distribution we show that the
radiation pressure depends on the atom number via cooperative scattering and
that, for certain atom numbers, it can be suppressed or enhanced.Comment: 8 pages, 2 Figure
Rotational Dynamics of Vortices in Confined Bose-Einstein Condensates
We derive the frequency of precession and conditions for stability for a
quantized vortex in a single-component and a two-component Bose-Einstein
condensate. The frequency of precession is proportional to the gradient of the
free energy with respect to displacement of the vortex core. In a two-component
system, it is possible to achieve a local minimum in the free energy at the
center of the trap. The presence of such a minimum implies the existence of a
region of energetic stability where the vortex cannot escape and where one may
be able to generate a persistent current.Comment: 6 Pages, 6 Figure
Detection of vorticity in Bose-Einstein condensed gases by matter-wave interference
A phase-slip in the fringes of an interference pattern is an unmistakable
characteristic of vorticity. We show dramatic two-dimensional simulations of
interference between expanding condensate clouds with and without vorticity. In
this way, vortices may be detected even when the core itself cannot be
resolved.Comment: 3 pages, RevTeX, plus 6 PostScript figure
- …