4 research outputs found
ΠΠΠΠ ΠΠ¦ΠΠ― Π‘ΠΠΠ‘ΠΠΠ§ΠΠ‘ΠΠΠ Π ΠΠ£ΠΠΠΠΠΠ§ΠΠ‘ΠΠΠ ΠΠΠ’ΠΠΠΠΠ‘Π’Π ΠΠΠ ΠΠ ΠΠ―ΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠΠΠ§ΠΠ‘ΠΠΠΠ ΠΠ ΠΠ¦ΠΠ‘Π‘Π
Publications about the earthquake foci migration have been reviewed. An importantΒ result of such studies is establishment of wave nature of seismic activity migration that isΒ manifested by two types of rotational waves; such waves are responsible for interactionΒ between earthquakes foci and propagate with different velocities. Waves determiningΒ long-range interaction of earthquake foci are classified as Type 1; their limiting velocitiesΒ range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks andΒ aftershocks of individual earthquakes are classified as Type 2; their velocities range fromΒ 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two typesΒ of migration waves correspond to slow and fast tectonic waves.Β The most complete data on earthquakes (for a period over 4.1 million of years) andΒ volcanic eruptions (for 12 thousand years) of the planet are consolidated in a unifiedΒ systematic format and analyzed by methods developed by the authors. For the PacificΒ margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three mostΒ active zones of the Earth, new patterns of spatial and temporal distribution of seismic andΒ volcanic activity are revealed; they correspond to Type 1 of rotational waves. The waveΒ nature of the migration of seismic and volcanic activity is confirmed. A new approach toΒ solving problems of geodynamics is proposed with application of the data on migrationΒ of seismic and volcanic activity, which are consolidated in this study, in combination withΒ data on velocities of movement of tectonic plate boundaries. This approach is based onΒ the concept of integration of seismic, volcanic and tectonic processes that develop in theΒ block geomedium and interact with each other through rotating waves with a symmetricΒ stress tensor. The data obtained in this study give grounds to suggest that a geodynamicΒ value, that is mechanically analogous to an impulse, remains constant in such interactions.Β It is thus shown that the process of wave migration of geodynamic activity should beΒ described by models with strongly nonlinear equations of motion.ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΠΎΠ±Π·ΠΎΡ ΡΠ°Π±ΠΎΡ ΠΏΠΎ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ ΠΎΡΠ°Π³ΠΎΠ² Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ. ΠΠ°ΠΆΠ½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌΒ ΡΠ²ΠΈΠ»ΠΎΡΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ ΡΠ΅ΠΉΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ,Β ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅ΡΡΡ Β Π΄Π²ΡΠΌΡ ΡΠΈΠΏΠ°ΠΌΠΈ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½, ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π·Π°Β Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΎΡΠ°Π³ΠΎΠ² Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ ΠΈ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΡΡΠΈΠΌΠΈΡΡ Ρ ΡΠ°Π·Π½ΡΠΌΠΈ ΡΠΊΠΎΡΠΎΡΡΡΠΌΠΈ. ΠΠ΅ΡΠ²ΠΎΠΌΡ ΡΠΈΠΏΡ Ρ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΊΠΎΡΠΎΡΡΡΠΌΠΈ 1β10 ΡΠΌ/Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ Π²ΠΎΠ»Π½Ρ,Β ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠ΅ Π΄Π°Π»ΡΠ½ΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΎΡΠ°Π³ΠΎΠ² Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ, Π²ΡΠΎΡΠΎΠΌΡ β Ρ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΊΠΎΡΠΎΡΡΡΠΌΠΈ 1β10 ΠΊΠΌ/Ρ β ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ Π²ΠΎΠ»Π½Ρ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠ΅Β Π±Π»ΠΈΠ·ΠΊΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΎΡΡΠΎΠΊΠΎΠ² ΠΈ Π°ΡΡΠ΅ΡΡΠΎΠΊΠΎΠ² Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΒ Π²Π·ΡΡΡΡ
ΠΎΡΠ°Π³ΠΎΠ² Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ [Bykov, 2005], ΡΠ°ΠΊΠΈΠ΅ ΡΠΈΠΏΡΒ Π²ΠΎΠ»Π½ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΌ ΠΈ Π±ΡΡΡΡΡΠΌ ΡΠ΅ΠΊΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π²ΠΎΠ»Π½Π°ΠΌ.Β Π Π΅Π΄ΠΈΠ½ΠΎΠΌ ΡΠΎΡΠΌΠ°ΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΡΡ
Π·Π°Β 4.1 ΡΡΡ. Π»Π΅Ρ ΠΈ ΠΈΠ·Π²Π΅ΡΠΆΠ΅Π½ΠΈΡΡ
Π²ΡΠ»ΠΊΠ°Π½ΠΎΠ² Π·Π° 12 ΡΡΡ. Π»Π΅Ρ. Π‘ΠΎΠ±ΡΠ°Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΠΈ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ.Β ΠΠ»Ρ ΡΡΠ΅Ρ
Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΏΠΎΡΡΠΎΠ² ΠΠ΅ΠΌΠ»ΠΈ β ΠΠ°ΡΠΈΡΠΈΠΊΠΈ, ΠΠ»ΡΠΏΠΈΠΉΡΠΊΠΎ-ΠΠΈΠΌΠ°Π»Π°ΠΉΡΠΊΠΎΠ³ΠΎΒ ΠΈ Π‘ΡΠ΅Π΄ΠΈΠ½Π½ΠΎ-ΠΡΠ»Π°Π½ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ β ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π½ΠΎΠ²ΡΠ΅, ΠΎΡΠ²Π΅ΡΠ°ΡΡΠΈΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠΌΡ ΡΠΈΠΏΡ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½, Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΒ ΡΠ΅ΠΉΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π²ΡΠ»ΠΊΠ°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ. ΠΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ»Π½ΠΎΠ²Π°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° ΠΈΡ
Β ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² ΡΠ°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Ρ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ
Β Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π³ΡΠ°Π½ΠΈΡ ΡΠ΅ΠΊΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ»ΠΈΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π³Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. Π ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π·Π°Π»ΠΎΠΆΠ΅Π½Π°Β ΠΈΠ΄Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π° ΡΠ΅ΠΉΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ, Π²ΡΠ»ΠΊΠ°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΡΠ΅ΠΊΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΡ
Π² Π±Π»ΠΎΠΊΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΡΡΠ΅Π΄Π΅ ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌΒ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½ Ρ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΠΌ ΡΠ΅Π½Π·ΠΎΡΠΎΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΡ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΠΎΡ
ΡΠ°Π½ΡΠ΅ΡΡΡΒ Π³Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°Π½Π°Π»ΠΎΠ³ΠΎΠΌ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡ.Β ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΡΠ΅ΡΡ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ Π³Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄ΠΎΠ»ΠΆΠ΅Π½Β ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ ΡΠΈΠ»ΡΠ½ΠΎ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΠ΅ΡΠ΅Π·ΠΎΠ½Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ ΡΠ³ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π»ΠΈΠ½Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ Π·ΠΈΠΌΠ½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΈΡ
Relevance. Currently, in many countries of the world, the production of non-season raspberry berry products has become widespread. Recently, interest in this technology has arisen in Russia, which has great prospects for the development of industrial gardening. In our opinion, it is promising to develop elements of technology for the non-seasonal production of red raspberries, propagated by the method of clonal micropropagation with a traditional and remontant type of fruiting in the conditions of winter heated greenhouses.Material and methods. The experiments were carried out in the laboratory of clonal micropropagation of garden plants in the fruit growing laboratory of RGAU-MSHA named after K.A. Timiryazev. The objects of research were varieties of red raspberries with a traditional (variety Volnitsa) and remontant (varieties Orangevoe Chudo and Bryanskoe Divo) type of fruiting. The experimental plants were propagated by the method of clonal micropropagation and grown before distillation in open and protected ground; plants propagated by root offspring served as control. Experimental plants were planted in open ground for growing in mid-May, in mid-October they were transplanted into 10 liter containers and transferred to protected ground conditions. Then put in the refrigerator compartment with a temperature of + 1 ... + 5Β°C. For distillation, the raspberry repairing plants were exposed in the winter heated greenhouse on January 20, while the shoots of replacing the aboveground system were normalized: without normalization, 3 shoots per plant, complete pruning of the aboveground system. Raspberries with a traditional type of fruiting were exposed in a winter heated greenhouse in three periods on January 20, February 10, March 2. Accounting for the passage of the phenological phases of development and yield was made for 3 months every 5 days.Results. In the conditions of winter heated greenhouses, efficiency has been shown and elements of technology for non-season production of raspberry berries remontant and berries with a traditional type of fruiting, propagated in vitro and grown before open field distillation are developed. It was revealed that it is necessary to normalize the shoots before distillation of raspberry remontant, and the optimal timing for the start of distillation for raspberries with a traditional type of fruiting has been established.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΡΡΠ°Π½Π°Ρ
ΠΌΠΈΡΠ° ΡΠΈΡΠΎΠΊΠΎΠ΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ Π½Π΅ΡΠ΅Π·ΠΎΠ½Π½ΠΎΠΉ ΡΠ³ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΠΌΠ°Π»ΠΈΠ½Ρ. Π ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΊ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊ ΠΈ Π² Π ΠΎΡΡΠΈΠΈ, ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»ΡΡΠΈΠ΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ Π΄Π»Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΎΠ²ΠΎΠ΄ΡΡΠ²Π°. ΠΠ° Π½Π°Ρ Π²Π·Π³Π»ΡΠ΄, ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ°Π·ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π΅ΡΠ΅Π·ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΡΠ³ΠΎΠ΄ ΠΌΠ°Π»ΠΈΠ½Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ, ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ ΠΈ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΡΠΌ ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π·ΠΈΠΌΠ½ΠΈΡ
ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ
ΡΠ΅ΠΏΠ»ΠΈΡ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°. ΠΠΏΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π΄ΠΎΠ²ΡΡ
ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΎΠ΄ΡΡΠ²Π° Π ΠΠΠ£-ΠΠ‘Π₯Π ΠΈΠΌ. Π.Π. Π’ΠΈΠΌΠΈΡΡΠ·Π΅Π²Π°. ΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ»ΡΠΆΠΈΠ»ΠΈ ΡΠΎΡΡΠ° ΠΌΠ°Π»ΠΈΠ½Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ (ΡΠΎΡΡ ΠΠΎΠ»ΡΠ½ΠΈΡΠ°) ΠΈ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΡΠΌ (ΡΠΎΡΡΠ° ΠΡΠ°Π½ΠΆΠ΅Π²ΠΎΠ΅ ΡΡΠ΄ΠΎ ΠΈ ΠΡΡΠ½ΡΠΊΠΎΠ΅ Π΄ΠΈΠ²ΠΎ) ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ. ΠΠΏΡΡΠ½ΡΠ΅ ΡΠ°ΡΡΠ΅Π½ΠΈΡ Π±ΡΠ»ΠΈ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π²ΡΡΠ°ΡΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅Π΄ Π²ΡΠ³ΠΎΠ½ΠΊΠΎΠΉ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ ΠΈ Π·Π°ΡΠΈΡΠ΅Π½Π½ΠΎΠΌ Π³ΡΡΠ½ΡΠ΅, ΠΊΠΎΠ½ΡΡΠΎΠ»Π΅ΠΌ ΡΠ»ΡΠΆΠΈΠ»ΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΡ, ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΡΠ½Π΅Π²ΡΠΌΠΈ ΠΎΡΠΏΡΡΡΠΊΠ°ΠΌΠΈ. Π ΠΎΡΠΊΡΡΡΡΠΉ Π³ΡΡΠ½Ρ ΡΠ°ΡΡΠ΅Π½ΠΈΡ Π±ΡΠ»ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Ρ Π² ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ ΠΌΠ°Ρ, Π² ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ ΠΎΠΊΡΡΠ±ΡΡ ΠΈΡ
ΠΏΠ΅ΡΠ΅ΡΠ°Π΄ΠΈΠ»ΠΈ Π² ΠΊΠΎΠ½ΡΠ΅ΠΉΠ½Π΅ΡΡ ΠΎΠ±ΡΠ΅ΠΌΠΎΠΌ 10 Π» ΠΈ ΠΏΠ΅ΡΠ΅Π½Π΅ΡΠ»ΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°ΡΠΈΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π³ΡΡΠ½ΡΠ°. ΠΠ°ΡΠ΅ΠΌ Π²ΡΡΡΠ°Π²ΠΈΠ»ΠΈ Π² Ρ
ΠΎΠ»ΠΎΠ΄ΠΈΠ»ΡΠ½ΡΠΉ ΠΎΡΡΠ΅ΠΊ Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΎΠΉ 1β¦5Β°C. ΠΠ»Ρ Π²ΡΠ³ΠΎΠ½ΠΊΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΠΎΠΉ Π²ΡΡΡΠ°Π²Π»ΡΠ»ΠΈ Π² Π·ΠΈΠΌΠ½ΡΡ ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ ΡΠ΅ΠΏΠ»ΠΈΡΡ 20 ΡΠ½Π²Π°ΡΡ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π½ΠΎΡΠΌΠΈΡΠΎΠ²ΠΊΡ ΠΏΠΎΠ±Π΅Π³ΠΎΠ² Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ: Π±Π΅Π· Π½ΠΎΡΠΌΠΈΡΠΎΠ²ΠΊΠΈ, 3 ΠΏΠΎΠ±Π΅Π³Π° Π½Π° ΡΠ°ΡΡΠ΅Π½ΠΈΠ΅, ΠΏΠΎΠ»Π½Π°Ρ ΠΎΠ±ΡΠ΅Π·ΠΊΠ° Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. ΠΠ°Π»ΠΈΠ½Ρ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΡΠ°Π²Π»ΡΠ»ΠΈ Π² Π·ΠΈΠΌΠ½ΡΡ ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ ΡΠ΅ΠΏΠ»ΠΈΡΡ Π² ΡΡΠΈ ΡΡΠΎΠΊΠ° 20 ΡΠ½Π²Π°ΡΡ, 10 ΡΠ΅Π²ΡΠ°Π»Ρ, 2 ΠΌΠ°ΡΡΠ°. Π£ΡΠ΅ΡΡ ΠΏΡΠΎΡ
ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π· ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈ ΠΏΠΎΡΡΡΠΏΠ»Π΅Π½ΠΈΡ ΡΡΠΎΠΆΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 3 ΠΌΠ΅ΡΡΡΠ΅Π² ΡΠ΅ΡΠ΅Π· ΠΊΠ°ΠΆΠ΄ΡΠ΅ 5 Π΄Π½Π΅ΠΉ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π·ΠΈΠΌΠ½ΠΈΡ
ΠΎΡΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΠΌΡΡ
ΡΠ΅ΠΏΠ»ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π΅ΡΠ΅Π·ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΡΠ³ΠΎΠ΄ ΠΌΠ°Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΠΎΠΉ ΠΈ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ, ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΡΡ
in vitro ΠΈ Π²ΡΡΠ°ΡΠ΅Π½Π½ΡΡ
ΠΏΠ΅ΡΠ΅Π΄ Π²ΡΠ³ΠΎΠ½ΠΊΠΎΠΉ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π³ΡΡΠ½ΡΠ΅. ΠΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ Π½ΠΎΡΠΌΠΈΡΠΎΠ²ΠΊΡ ΠΏΠΎΠ±Π΅Π³ΠΎΠ² ΠΏΠ΅ΡΠ΅Π΄ Π²ΡΠ³ΠΎΠ½ΠΊΠΎΠΉ ΠΌΠ°Π»ΠΈΠ½Ρ ΡΠ΅ΠΌΠΎΠ½ΡΠ°Π½ΡΠ½ΠΎΠΉ ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠΎΠΊΠΈ Π½Π°ΡΠ°Π»Π° Π²ΡΠ³ΠΎΠ½ΠΊΠΈ Π΄Π»Ρ ΠΌΠ°Π»ΠΈΠ½Ρ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠΈΠΏΠΎΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ½ΠΎΡΠ΅Π½ΠΈΡ
MIGRATION OF SEISMIC AND VOLCANIC ACTIVITY AS DISPLAY OF WAVE GEODYNAMIC PROCESS
Publications about the earthquake foci migration have been reviewed. An importantΒ result of such studies is establishment of wave nature of seismic activity migration that isΒ manifested by two types of rotational waves; such waves are responsible for interactionΒ between earthquakes foci and propagate with different velocities. Waves determiningΒ long-range interaction of earthquake foci are classified as Type 1; their limiting velocitiesΒ range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks andΒ aftershocks of individual earthquakes are classified as Type 2; their velocities range fromΒ 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two typesΒ of migration waves correspond to slow and fast tectonic waves.Β The most complete data on earthquakes (for a period over 4.1 million of years) andΒ volcanic eruptions (for 12 thousand years) of the planet are consolidated in a unifiedΒ systematic format and analyzed by methods developed by the authors. For the PacificΒ margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three mostΒ active zones of the Earth, new patterns of spatial and temporal distribution of seismic andΒ volcanic activity are revealed; they correspond to Type 1 of rotational waves. The waveΒ nature of the migration of seismic and volcanic activity is confirmed. A new approach toΒ solving problems of geodynamics is proposed with application of the data on migrationΒ of seismic and volcanic activity, which are consolidated in this study, in combination withΒ data on velocities of movement of tectonic plate boundaries. This approach is based onΒ the concept of integration of seismic, volcanic and tectonic processes that develop in theΒ block geomedium and interact with each other through rotating waves with a symmetricΒ stress tensor. The data obtained in this study give grounds to suggest that a geodynamicΒ value, that is mechanically analogous to an impulse, remains constant in such interactions.Β It is thus shown that the process of wave migration of geodynamic activity should beΒ described by models with strongly nonlinear equations of motion
Non-season production of raspberry of red berry products in conditions of heated winter greenhouses
Relevance. Currently, in many countries of the world, the production of non-season raspberry berry products has become widespread. Recently, interest in this technology has arisen in Russia, which has great prospects for the development of industrial gardening. In our opinion, it is promising to develop elements of technology for the non-seasonal production of red raspberries, propagated by the method of clonal micropropagation with a traditional and remontant type of fruiting in the conditions of winter heated greenhouses.Material and methods. The experiments were carried out in the laboratory of clonal micropropagation of garden plants in the fruit growing laboratory of RGAU-MSHA named after K.A. Timiryazev. The objects of research were varieties of red raspberries with a traditional (variety Volnitsa) and remontant (varieties Orangevoe Chudo and Bryanskoe Divo) type of fruiting. The experimental plants were propagated by the method of clonal micropropagation and grown before distillation in open and protected ground; plants propagated by root offspring served as control. Experimental plants were planted in open ground for growing in mid-May, in mid-October they were transplanted into 10 liter containers and transferred to protected ground conditions. Then put in the refrigerator compartment with a temperature of + 1 ... + 5Β°C. For distillation, the raspberry repairing plants were exposed in the winter heated greenhouse on January 20, while the shoots of replacing the aboveground system were normalized: without normalization, 3 shoots per plant, complete pruning of the aboveground system. Raspberries with a traditional type of fruiting were exposed in a winter heated greenhouse in three periods on January 20, February 10, March 2. Accounting for the passage of the phenological phases of development and yield was made for 3 months every 5 days.Results. In the conditions of winter heated greenhouses, efficiency has been shown and elements of technology for non-season production of raspberry berries remontant and berries with a traditional type of fruiting, propagated in vitro and grown before open field distillation are developed. It was revealed that it is necessary to normalize the shoots before distillation of raspberry remontant, and the optimal timing for the start of distillation for raspberries with a traditional type of fruiting has been established