49 research outputs found

    Synthesis of Novel E-2-Chlorovinyltellurium Compounds Based on the Stereospecific Anti-addition of Tellurium Tetrachloride to Acetylene

    No full text
    The reaction of tellurium tetrachloride with acetylene proceeds in a stereospecific <em>anti</em>-addition manner to afford the novel products <em>E</em>-2-chlorovinyltellurium trichloride and <em>E</em>,<em>E</em>-bis(2-chlorovinyl)tellurium dichloride. Reaction conditions for the selective preparation of each of these products were found. The latter was obtained in 90% yield in CHCl<sub>3</sub> under a pressure of acetylene of 10–15 atm, whereas the former product was formed in up to 72% yield in CCl<sub>4</sub> under a pressure of acetylene of 1–3 atm. Synthesis of the previously unknown<em> E,E</em>-bis(2-chlorovinyl) telluride, <em>E</em>,<em>E</em>-bis(2-chlorovinyl) ditelluride, <em>E</em>-2-chlorovinyl 1,2,2-trichloroethyl telluride and <em>E</em>,<em>E</em>-bis(2-chlorovinyl)-tellurium dibromide is described

    Efficient Regioselective Synthesis of Novel Water-Soluble 2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium Derivatives by Annulation Reactions of 8-quinolinesulfenyl Halides

    No full text
    Regioselective synthesis of novel 2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives has been developed by annulation reactions of 8-quinolinesulfenyl halides with vinyl chalcogenides (vinyl ethers, divinyl sulfide, divinyl selenide and phenyl vinyl sulfide) and tetravinyl silane. The novel reagent 8-quinolinesulfenyl bromide was used in the annulation reactions. The influence of the substrate structure and the nature of heteroatoms on the direction of the reactions and on product yields has been studied. The opposite regiochemistry was observed in the reactions with vinyl chalcogenides and tetravinyl silane. The obtained condensed heterocycles are novel water-soluble functionalized compounds with promising biological activity

    Recent Advances in Design and Synthesis of Diselenafulvenes, Tetraselenafulvalenes, and Their Tellurium Analogs and Application for Materials Sciences

    No full text
    The first organic metals were obtained based on tetrathiafulvalene. The most significant advance in the field of organic metals was the discovery of superconductivity. The first organic superconductors were obtained based on tetramethyltetraselenafulvalene. These facts demonstrate great importance of tetraselenafulvalenes and their precursors, diselenafulvenes, for materials sciences. Derivatives of 1,4-diselenafulvene and 1,4,5,8-tetraselenafulvalene are useful building blocks for organic synthesis and donor units for the preparation of charge-transfer complexes and radical ion salts, the construction of organic metals, superconductors, organic Dirac materials, semiconductors, ferromagnets, and other conductive materials. This review covers the literature on the design, synthesis, and application of 1,4,5,8-tetraselenafulvalenes and 1,4-diselenafulvenes and their tellurium analogs over the past 15–20 years. These two classes of compounds are interconnected, since the main part of methods for the synthesis of tetraselenafulvalenes is based on the diselenafulvene derivatives as starting compounds. Special attention is paid to the development of novel efficient synthetic approaches to these classes of compounds. Conducting properties and distinguishing features of materials based on tetraselenafulvalenes and their tellurium analogs as well as examples of materials with high conductivity are discussed

    Efficient Regioselective Synthesis of Novel Condensed Sulfur–Nitrogen Heterocyclic Compounds Based on Annulation Reactions of 2-Quinolinesulfenyl Halides with Alkenes and Cycloalkenes

    No full text
    The preparation of novel reagents 2-quinolinesulfenyl chloride and bromide based on available 2-mercaptoquinoline has been described. This approach opens up opportunities for the introduction of 2-quinolinesulfenyl chloride and bromide into organic synthesis. Regioselective synthesis of novel 1,2-dihydro[1,3]thiazolo[3,2-a]quinolin-10-ium derivatives in high yields has been developed by annulation reactions of 2-quinolinesulfenyl chloride and bromide with alkenes. Condensed tetracyclic products have been obtained by the reactions of 2-quinolinesulfenyl chloride and bromide with cycloalkenes. The opposite regiochemistry in the reactions with styrene, isoeugenol and 1-alkenes was discussed

    (Z,Z)-Selanediylbis(2-propenamides): Novel Class of Organoselenium Compounds with High Glutathione Peroxidase-Like Activity. Regio- and Stereoselective Reaction of Sodium Selenide with 3-Trimethylsilyl-2-propynamides

    No full text
    The efficient regio- and stereoselective synthesis of (Z,Z)-3,3′-selanediylbis(2-propenamides) in 76–93% yields was developed based on the reaction of sodium selenide with 3-trimethylsilyl-2-propynamides. (Z,Z)-3,3′-Selanediylbis(2-propenamides) are a novel class of organoselenium compounds. To date, not a single representative of 3,3′-selanediylbis(2-propenamides) has been described in the literature. Studying glutathione peroxidase-like properties by a model reaction showed that the activity of the obtained products significantly varies depending on the organic moieties in the amide group. Divinyl selenide, which contains two lipophilic cyclohexyl substituents in the amide group, exhibits very high glutathione peroxidase-like activity and this compound is considerably superior to other products in this respect

    Regioselective Synthesis of Novel Functionalized Dihydro-1,4-thiaselenin-2-ylsufanyl Derivatives under Phase Transfer Catalysis

    No full text
    The regioselective one-pot synthesis of novel functionalized 2,3-dihydro-1,4-thiaselenin-2-ylsufanyl derivatives in high yields based on 2-bromomethyl-1,3-thiaselenole and activated alkenes was developed under phase transfer catalysis conditions. The reactions proceed under mild conditions at room temperature in a regioselective manner with the addition of sodium dihydro-1,4-thiaselenin-2-ylthiolate exclusively at the terminal carbon atom of the double bond of vinyl methyl ketone, alkylacrylates, acrylamide, acrylonitrile, divinyl sulfone, and divinyl sulfoxide. The sodium dihydro-1,4-thiaselenin-2-ylthiolate was generated from 2-[amino(imino)methyl]sulfanyl-2,3-dihydro-1,4-thiaselenine hydrobromide. The latter compound was obtained by the reaction of 2-bromomethyl-1,3-thiaselenole with thiourea, which was accompanied by a rearrangement with ring expansion to the six-membered heterocycle. The obtained 2,3-dihydro-1,4-thiaselenin-2-ylsufanyl derivatives are a novel family of compounds with putative biological activity. The addition products of sodium dihydro-1,4-thiaselenin-2-ylthiolate at one double bond of divinyl sulfone and divinyl sulfoxide, containing vinylsulfonyl and vinylsulfinyl groups, are capable of further addition reactions. A possibility to obtain corresponding alcohol derivatives was shown in the reaction with vinyl methyl ketone
    corecore